Leuze electronic

the sensor people

MA 204i Gateway del fieldbus – PROFIBUS DP

t 04-2017/01 5011303 Jon riserva di modifiche tecniche

△ Leuze electronic

© 2017

Leuze electronic GmbH + Co. KG

In der Braike 1

D-73277 Owen / Germany Phone: +49 7021 573-0 Fax: +49 7021 573-199 http://www.leuze.com

info@leuze.de

1	Informazioni generali	6
1.1	Significato dei simboli	6
1.2	Dichiarazione di conformità	6
1.3	Descrizione del funzionamento	7
1.4	Definizioni dei termini	ε
2	Sicurezza	9
2.1	Uso conforme	
2.2	Uso non conforme prevedibile	9
2.3	Persone qualificate	10
2.4	Esclusione della responsabilità	10
3	Messa in servizio rapida / principio di funzionamento	11
3.1	Montaggio	
3.2	Posizionamento dell'apparecchio e scelta del luogo di montaggio	11
3.3 3.3.1 3.3.2 3.3.3	Collegamento elettrico Collegamento dell'apparecchio Leuze Impostazione dell'indirizzo PROFIBUS dell'apparecchio Collegamento dell'alimentazione elettrica e del cavo bus	12
3.4	Avvio dell'apparecchio	13
3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5	Messa in servizio dell'MA 204 <i>i</i> nel PROFIBUS DP. Preparazione del controllore. Installazione del file GSD. Progettazione. Configurazione dei moduli Trasmissione della progettazione al controller.	13 14 14
4	Descrizione dell'apparecchio	16
4.1	Informazioni generali sulle unità di collegamento	16
4.2	Caratteristiche delle unità di collegamento	16
4.3	Struttura dell'apparecchio	17
4.4	Modi operativi	18
4.5 4.5.1	Sistemi fieldbus	
5	Dati tecnici	21
5.1	Dati generali	21

5.2	Disegni quotati	. 22
5.3	Elenco dei tipi	. 23
6	Installazione e montaggio	24
6.1	Immagazzinamento, trasporto	. 24
6.2	Montaggio	. 25
6.3 6.3.1	Posizionamento dell'apparecchio	
6.4	Pulizia	. 26
7	Collegamento elettrico	27
7.1	Note di sicurezza sul collegamento elettrico	. 27
7.2 7.2.1 7.2.2	Collegamento elettrico . PWR IN – tensione di alimentazione / ingresso/uscita di commutazione	. 28
7.3	BUS IN	. 30
7.4 7.4.1	BUS OUT Terminazione del PROFIBUS	
7.5 7.5.1 7.5.2	Interfacce apparecchi	. 32
8	Indicatori di stato ed elementi di controllo	34
8.1 8.1.1 8.1.2	Indicatori di stato a LED. Indicatori a LED sulla scheda Indicatori a LED sull'alloggiamento	. 34
8.2 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6	Interfacce interne ed elementi di controllo Panoramica degli elementi di controllo Collegamenti con connettori X30 Interfaccia di assistenza RS 232 – X33 Interruttore di assistenza S10 Interruttore rotativo S4 per la selezione dell'apparecchio Interruttore per la selezione dell'indirizzo nel fieldbus	.38
9	Configurazione	41
9.1	Collegamento dell'interfaccia di assistenza	. 41
9.2	Lettura delle informazioni in modalità di assistenza	. 41
10	Telegramma	44

10.1	Struttura del telegramma di fieldbus	. 44
10.2 10.2.1 10.2.2 10.2.3	Descrizione dei byte di ingresso (byte di stato)	. 45 . 46
10.3 10.3.1 10.3.2 10.3.3	Descrizione dei byte di uscita (byte di controllo)	. 48 . 49
10.4	Funzione di RESET / Cancellazione della memoria	. 51
11	Modalità	52
11.1 11.1.1 11.1.2 11.1.3	Funzionamento dello scambio di dati Lettura di dati slave nella modalità di «raccolta» (gateway -> PLC) Scrittura di dati slave nella modalità di «raccolta» (PLC -> gateway) Modalità di comando	. 52 . 53
12	Messa in servizio e configurazione	59
12.1	Provvedimenti da adottare prima della prima messa in servizio	
12.2	Avvio dell'apparecchio	. 60
12.3 12.3.1 12.3.2 12.3.3 12.3.4 12.3.5	Fasi di progettazione per un controllore Siemens Simatic S7. Fase 1 – Preparazione del controllore (PLC-S7). Fase 2 – Installazione del file GSD. Fase 3 – Configurazione hardware del PLC-S7: progettazione. Fase 4 – Configurazione dei moduli. Fase 5 – Trasmissione della progettazione al controller (PLC-S7).	. 6 ² . 6 ² . 6 ²
12.4	Messa in servizio tramite PROFIBUS DP	. 64
12.5 12.5.1 12.5.2 12.5.3	Informazioni generali sull'implementazione PROFIBUS dell'MA 204i	. 64 . 64
12.5.4 12.5.5 12.5.6 12.5.7	Riconoscimento automatico della velocità di trasmissione	. 66 . 67 . 68
12.5.8	Preparazione del controllore alla trasmissione di dati consistente Configurazione variabile della larghezza dati di comunicazione	
12.6 12.7	Impostazione dei parametri di lettura sull'apparecchio Leuze	
12.7.1	Particolarità nell'utilizzo di scanner manuali (apparecchi per codici a barre e 2D, apparecchi combinati con RFID)	

Inhaltsverzeichnis

12.7.2	Particolarità nell'utilizzo di un RFM/RFI	72
13	Diagnostica ed eliminazione degli errori	73
13.1	Cause generali degli errori	73
13.2	Errori interfaccia	74
14	Elenco dei tipi e degli accessori	75
14.1	Codice di identificazione	75
14.2	Elenco dei tipi	75
14.3	Accessorio: resistenza terminale	75
14.4	Accessori: connettori	75
14.5	Accessori: cavi preassemblati per l'alimentazione elettrica	
14.5.1 14.5.2	Occupazione dei contatti del cavo di collegamento PWR	
14.5.2 14.5.3	Dati tecnici dei cavi per l'alimentazione elettrica Designazioni per l'ordinazione dei cavi di alimentazione elettrica	
14.6	Accessori: cavi preassemblati per il collegamento del bus	
14.6.1	Informazioni generali	77
14.6.2	Occupazione dei contatti del cavo di collegamento M12 PROFIBUS KB PB	
14.6.3 14.6.4	Dati tecnici del cavo di collegamento M12 PROFIBUS KB PB	
14.7	Accessori: cavi preassemblati per il collegamento degli apparecchi di	
	identificazione Leuze	
14.7.1	Sigle per l'ordinazione dei cavi di collegamento apparecchi	
14.7.2	Occupazione dei contatti dei cavi di collegamento apparecchi	
15	Manutenzione	80
15.1	Istruzioni generali di manutenzione	80
15.2	Riparazione, manutenzione	80
15.3	Smontaggio, imballaggio, smaltimento	80
16	Specifiche per terminali Leuze	81
16.1	Impostazione standard, KONTURflex (posizione 0 dell'interruttore S4)	81
16.2	Lettore di codici a barre BCL 8 (posizione 1 dell'interruttore S4)	83
16.3	Lettore di codici a barre BCL 22 (posizione 2 dell'interruttore S4)	84
16.4	Lettore di codici a barre BCL 300i, BCL 500i, BCL 600i (posizione 4 dell'interruttore S4)	85
16.5	Lettore di codici a barre BCL 90, BCL 900i (posizione 5 dell'interruttore S4)	
16.6	LSIS 122, LSIS 222 (posizione 6 dell'interruttore S4)	87

17.1	Tabella ASCII	
17	Appendice9	7
16.12	Unità di collegamento modulare MA 3x (posizione C dell'interruttore S4)	95
16.11	Sistema di posizionamento a codice a barre BPS 300i, sensori ottici di distanza ODSL xx con interfaccia RS 232 (posizione B dell'interruttore S4)	93
16.10	Sistema di posizionamento a codici a barre BPS 8 (posizione A dell'interruttore S4)	91
16.9	Apparecchi di lettura RFID RFI, RFM, RFU (posizione 9 dell'interruttore S4)	90
16.8	Scanner manuale (posizione 8 dell'interruttore S4)	39
16.7	LSIS 4x2i, DCR 202i (posizione 7 dell'interruttore S4)	38

1 Informazioni generali

1.1 Significato dei simboli

Qui di seguito è possibile trovare la spiegazione del significato dei simboli usati per questa descrizione tecnica.

Attenzione!

Questo simbolo indica le parti di testo che devono essere assolutamente rispettate. La loro inosservanza può causare ferite alle persone o danni alle cose.

Avviso!

Questo simbolo indica parti del testo contenenti informazioni importanti.

1.2 Dichiarazione di conformità

Le unità di collegamento modulari MA 204 sono state progettate e prodotte in osservanza delle vigenti norme e direttive europee.

Avviso!

La dichiarazione di conformità degli apparecchi può essere richiesta al costruttore.

Il produttore, la ditta Leuze electronic GmbH + Co. KG in D-73277 Owen, è in possesso di un sistema di garanzia della qualità certificato ISO 9001.

L'unità di collegamento modulare MA 204i è marcata «UL LISTED» secondo le norme di sicurezza statunitensi e canadesi ovvero soddisfa i requisiti degli Underwriter Laboratories Inc. (UL).

1.3 Descrizione del funzionamento

L'unità di collegamento modulare MA 204*i* serve per il collegamento diretto degli apparecchi Leuze al fieldbus.

Lettori di codici a barre: BCL 8, 22, 300i, 500i, 600i, 90, 900i
Lettori di codici 2D: LSIS 122, LSIS 222, LSIS 4x2i, DCR 200i

Scanner manuali ITxxxx, HFU/HFM

Apparecchi di lettura/scrittura RFID: RFM 12, 32, 62 & RFI 32, RFU 100, RFU 200

Sistemi di posizionamento a codici

a barre: BPS 8, BPS 300

Sensori di distanza ottici: ODSL 9, ODSL 30, ODSL 96B
Barriera fotoelettrica di misura: KONTURflex su Quattro-RSX/M12

Scatola di collegamento

master multiNet: MA 3x

Ulteriori apparecchi RS 232: Bilance, dispositivi esterni

I dati vengono trasmessi dal DEV attraverso un'interfaccia RS 232 (V.24) all'MA 204i e qui convertiti in un modulo nel protocollo PROFIBUS DP. Il formato dei dati sull'interfaccia RS 232 corrisponde al formato di dati standard Leuze (9600 Bd, 8N1 e STX, dati, CR, LF). Per il funzionamento corretto dell'MA 204i è necessario che il file GSD sia integrato nel

gestore hardware del PLC.

La selezione del corrispondente apparecchio Leuze viene eseguita mediante l'interruttore orientabile di codifica sulla scheda elettronica dell'unità di collegamento. Una posizione universale permette di collegare molti altri apparecchi RS 232.

1.4 Definizioni dei termini

Per semplificare la comprensione della descrizione, seguono le definizioni di alcuni termini:

· Designazione dei bit:

Il 1° bit o byte inizia con il numero di conteggio «0» ed indica il bit/byte 20.

· Lunghezza dati:

Grandezza di un pacchetto dati interconnesso valido in byte.

• File GSD (file originario dell'apparecchio):

Descrizione dell'apparecchio per il controllore.

Consistente:

I dati connessi per contenuto e che non devono essere separati vengono detti dati consistenti. Nell'identificazione di oggetti deve essere garantito che i dati vengano trasmessi completamente e nella sequenza corretta, altrimenti il risultato viene falsificato.

Apparecchio Leuze (DEV):

Apparecchi Leuze, ad es. lettori di codici a barre, apparecchi di lettura RFID, VisionReader...

. Comando online:

Questi comandi si riferiscono all'apparecchio di identificazione collegato e possono differire a seconda dell'apparecchio. Questi comandi non vengono interpretati dall'MA 204i ma trasmessi in modo trasparente (vedere la descrizione dell'apparecchio di identificazione).

• RIM:

Rimando

· Vista dei dati I/O nella descrizione:

I dati di uscita sono quelli inviati dal controllore all'MA. I dati di ingresso sono quelli inviati dall'MA al controllore.

· Toggle bit:

Toggle bit di stato

Ogni cambiamento di stato segnala che è stata eseguita un'azione, ad esempio il bit ND (New Data): ad ogni cambiamento di stato viene visualizzato che nuovi dati di ricezione sono stati trasmessi al PLC.

Toggle bit di controllo

Ad ogni cambiamento di stato viene eseguita un'azione, ad esempio il bit SDO: ad ogni cambiamento di stato i dati registrati vengono trasmessi dal PLC all'MA 204i.

2 Sicurezza

Il presente apparecchio è stato sviluppato, costruito e controllato conformemente alle vigenti norme di sicurezza. È conforme allo stato attuale della tecnica.

2.1 Uso conforme

L'unità di collegamento modulare MA 204*i* serve per la connessione diretta di apparecchi Leuze come lettori di codici a barre o codici 2D, scanner manuali, apparecchi di lettura/scrittura RFID, ecc. al fieldbus.

CAUTELA

Rispettare l'uso conforme!

- Utilizzare l'apparecchio solo conformemente all'uso previsto. La protezione del personale addetto e dell'apparecchio non è garantita se l'apparecchio non viene impiegato conformemente al suo regolare uso.
 - Leuze electronic GmbH + Co. KG non risponde di danni derivanti da un uso non conforme.
- Leggere la presente descrizione tecnica prima della messa in servizio dell'apparecchio. L'uso conforme comprende la conoscenza della presente descrizione tecnica.

AVVISO

Rispettare le disposizioni e le prescrizioni!

Rispettare le disposizioni di legge localmente vigenti e le prescrizioni di legge sulla sicurezza del lavoro.

Attenzione

Per applicazioni UL l'utilizzo è consentito solo in circuiti di Class-2 secondo NEC (National Electric Code).

2.2 Uso non conforme prevedibile

Qualsiasi utilizzo diverso da quello indicato nell'«Uso conforme» o che va al di là di questo utilizzo viene considerato non conforme.

L'uso dell'apparecchio non è ammesso in particolare nei seguenti casi:

- in ambienti con atmosfera esplosiva
- quale componente di sicurezza autonomo ai sensi della direttiva macchine ¹⁾
- · per applicazioni mediche

Se il costruttore della macchina ha tenuto conto degli aspetti concettuali relativi alla combinazione dei componenti, l'impiego come componente di sicurezza all'interno di una funzione di sicurezza è possibile.

AVVISO

Nessun intervento o modifica sull'apparecchio!

Non effettuare alcun intervento e modifica sull'apparecchio.

Interventi e modifiche all'apparecchio non sono consentiti.

L'apparecchio non deve essere aperto, in quanto non contiene componenti regolabili o sottoponibili a manutenzione dall'utente.

Tutte le riparazioni devono essere effettuate esclusivamente da Leuze electronic GmbH + Co. KG.

2.3 Persone qualificate

Il collegamento, il montaggio, la messa in servizio e la regolazione dell'apparecchio devono essere eseguiti solo da persone qualificate.

Condizioni preliminari per le persone qualificate:

- Dispongono di una formazione tecnica idonea.
- Conoscono le norme e disposizioni in materia di protezione e sicurezza sul lavoro.
- Conoscono la descrizione tecnica dell'apparecchio.
- Sono stati addestrati dal responsabile nel montaggio e nell'uso dell'apparecchio.

Elettricisti specializzati

I lavori elettrici devono essere eseguiti solo da elettricisti specializzati.

A seguito della loro formazione professionale, delle loro conoscenze ed esperienze così come della loro conoscenza delle norme e disposizioni valide in materia, gli elettricisti specializzati sono in grado di eseguire lavori sugli impianti elettrici e di riconoscere autonomamente i possibili pericoli.

In Germania gli elettricisti specializzati devono soddisfare le disposizioni delle norme antinfortunistiche BGV A3 (ad es. perito elettrotecnico). In altri paesi valgono le rispettive disposizioni che vanno osservate.

2.4 Esclusione della responsabilità

La Leuze electronic GmbH + Co. KG declina qualsiasi responsabilità nei seguenti casi:

- L'apparecchio non viene utilizzato in modo conforme.
- Non viene tenuto conto di applicazioni errate ragionevolmente prevedibili.
- Il montaggio ed il collegamento elettrico non vengono eseguiti correttamente.
- Vengono apportate modifiche (ad es. costruttive) all'apparecchio.

▲ Leuze electronicMessa in servizio rapida/principio di funzionamento

3 Messa in servizio rapida/principio di funzionamento

Avviso!

Le pagine seguenti contengono una **descrizione sommaria della prima messa in servizio** del gateway PROFIBUS MA 204i. Informazioni dettagliate sui singoli punti sono riportate in seguito nel presente manuale.

3.1 Montaggio

La piastra di montaggio dei gateway MA 204i può essere montata in due modi diversi:

- · Con quattro fori filettati (M6) o
- Con due viti M8x6 su entrambe le scanalature di fissaggio laterali.

3.2 Posizionamento dell'apparecchio e scelta del luogo di montaggio

L'MA 204i deve essere preferibilmente montata in un luogo ben accessibile vicino all'apparecchio di identificazione, in modo da garantirne il buon utilizzo, ad esempio per la parametrizzazione dell'apparecchio collegato.

Per ulteriori informazioni vedere il capitolo 6.3.1.

3.3 Collegamento elettrico

Gli apparecchi della famiglia MA 2xxi dispongono di quattro connettori M12/prese diversamente codificati/e a seconda dell'interfaccia.

Qui vengono collegati l'alimentazione elettrica (**PWR IN**) e gli ingressi/le uscite di commutazione (**PWR OUT** o **PWR IN**). Il numero e la funzione degli ingressi/uscite di commutazione dipende dal terminale collegato.

Un'interfaccia interna RS 232 serve per il collegamento dei rispettivi apparecchi Leuze. Un'ulteriore interfaccia interna RS 232 funge da interfaccia di assistenza per la parametrizzazione dell'apparecchio collegato tramite un cavo zero modem seriale.

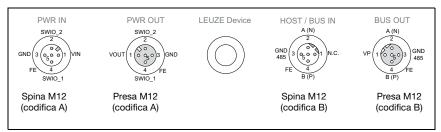


Figura 3.1: Collegamenti dell'MA 204i

Per ulteriori informazioni vedere il capitolo 7.

Messa in servizio rapida/principio di funzionamento ▲ Leuze electronic

3.3.1 Collegamento dell'apparecchio Leuze

- Per collegare l'apparecchio Leuze all'interfaccia apparecchio interna RS 232, aprire l'alloggiamento dell'MA 204i e condurre il relativo cavo dell'apparecchio (vedi capitolo 14.7) attraverso il foro filettato intermedio.
- Collegare il cavo all'interfaccia interna dell'apparecchio (X30, X31 o X32, vedi capitolo 7.5.1).
- 🔖 Selezionare con l'interruttore rotativo **S4** (vedi capitolo 8.2.5) l'apparecchio collegato.
- Avvitare anche il passacavo PG nel foro filettato per garantire lo scarico della trazione del cavo ed il grado di protezione IP 65.

3.3.2 Impostazione dell'indirizzo PROFIBUS dell'apparecchio

Impostare l'indirizzo di stazione del gateway tramite gli interruttori rotativi S1 - S3 (unità, decine e centinaia).

Avviso!

Il PROFIBUS consente un intervallo di indirizzi da 0 a 126. L'indirizzo 126 non deve essere utilizzato per il traffico dati. È consentito solo temporaneamente per la messa in servizio. Verificare che ad ogni nodo PROFIBUS venga assegnato un indirizzo PROFIBUS diverso.

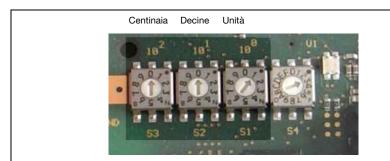


Figura 3.2: Interruttore rotativo per l'impostazione dell'indirizzo

⋄ Infine richiudere l'alloggiamento dell'MA 204i.

Attenzione!

Solo a questo punto si può applicare la tensione di alimentazione.

All'avvio dell'MA 204i, il selettore dell'apparecchio e le impostazioni dell'indirizzo vengono interrogati ed il gateway si imposta automaticamente sull'apparecchio Leuze.

Collegamento della messa a terra funzionale FE

Prestare attenzione al collegamento corretto alla messa a terra funzionale (FE).

△ Leuze electronicMessa in servizio rapida/principio di funzionamento

Il funzionamento privo di anomalie è assicurato solo se il collegamento alla messa a terra funzionale è stato eseguito correttamente. Tutti i disturbi elettrici (accoppiamenti CEM) vengono scaricati dal collegamento della terra funzionale.

3.3.3 Collegamento dell'alimentazione elettrica e del cavo bus

- Utilizzare di preferenza i cavi preassemblati indicati nel capitolo 14.5.3 per collegare il gateway all'alimentazione elettrica tramite il connettore PWR IN.
- Collegare il gateway al fieldbus tramite il connettore HOST / BUS IN utilizzando di preferenza i cavi preassemblati.
- Se necessario, utilizzare il connettore BUS OUT per realizzare una rete in una topologia lineare.

3.4 Avvio dell'apparecchio

♦ Applicare la tensione di alimentazione +18 ... 30 VCC (tip. +24 VCC).

L'MA 204i si avvia, il LED PWR indica lo stato di stand-by.

3.5 Messa in servizio dell'MA 204i nel PROFIBUS DP

Per un controllore Siemens S7 eseguire le seguenti operazioni necessarie per la messa in servizio.

Per ulteriori informazioni sulle singole fasi della messa in servizio, vedi capitolo 12.3 «Fasi di progettazione per un controllore Siemens Simatic S7».

3.5.1 Preparazione del controllore

Nella prima fase, preparare il controllore alla trasmissione di dati consistente.

Nella programmazione il controllore deve essere preparato alla trasmissione di dati consistente. Ciò è diverso da controllore a controllore. Per il controllore Siemens vengono offerte le seguenti possibilità.

S7

Devono essere integrati nel programma gli speciali elementi funzionali SFC 14 per i dati di ingresso e SFC 15 per i dati di uscita. Questi elementi sono componenti standard ed hanno il compito di consentire la trasmissione di dati consistente.

0	Avviso!
\Box	Per un controllore S7 è necessario utilizzare almeno il Simatic Manager di versione 5.4 +
	Service Pack 5 (V5.4+SP5).

3.5.2 Installazione del file GSD

Per la progettazione a posteriori degli apparecchi PROFIBUS, ad esempio dell'MA 204i, è necessario caricare il file GSD corrispondente. Questo file contiene tutti i dati in moduli necessari per il funzionamento dell'apparecchio. Si tratta di dati di ingresso e di uscita e di parametri per il funzionamento dell'apparecchio e della definizione dei bit di controllo e di stato.

Installare il file GSD dell'apparecchio nel PROFIBUS manager del controllore.

3.5.3 Progettazione

Progettare il sistema PROFIBUS mediante l'HW Config del SIMATIC Manager, inserendo l'MA 204i nel progetto ed assegnandole un indirizzo univoco (0 ... 125).

Avviso!

Attenzione: questo indirizzo e quello configurato nell'apparecchio devono essere uguali.

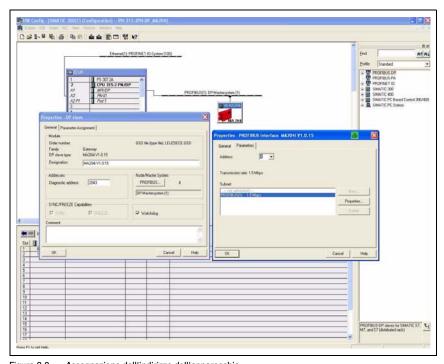


Figura 3.3: Assegnazione dell'indirizzo dell'apparecchio

▲ Leuze electronicMessa in servizio rapida/principio di funzionamento

3.5.4 Configurazione dei moduli

🔖 Selezionare un solo modulo dati corrispondente per l'intervallo di ingresso e di uscita.

Sono disponibili diversi moduli combinabili tra loro in diverse lunghezze di dati (4, 8, 12, 16, 20, 32 ... 128 byte). In tutto, sono possibili massimo 244 byte per i byte di ingresso e uscita rispettivamente.

Avviso!

Poiché il modulo dati contiene 2 byte rispettivamente per i byte di controllo ed i byte di stato, la mera lunghezza dei dati utili è sempre minore di 2 byte rispetto al modulo dati selezionato. Se si utilizza per esempio il modulo dati con 12 byte, detratti i 2 byte di stato e di controllo, l'apparecchio Leuze avrà a disposizione 10 byte effettivi per i dati utili.

Suggerimento

Per il modulo di uscita è sufficiente, nella maggior parte dei casi, il modulo a 4 byte.

Un modulo maggiore è ad esempio necessario per parametrizzare uno scanner di codici a barre BCL tramite sequenze PT o per scrivere in un transponder RFID. In questi casi è quasi sempre opportuno utilizzare moduli dati maggiori.

Avviso!

È possibile trovare alcuni esempi per la scelta della lunghezza adatta del modulo dati nel capitolo 12.3.4, sezione «Esempi di impostazioni opportune per i rispettivi apparecchi Leuze» a pagina 63.

3.5.5 Trasmissione della progettazione al controller

Trasmettere la progettazione PROFIBUS al controller (PLC-S7).

Dopo la trasmissione corretta al controller (PLC-S7), il PLC esegue automaticamente le seguenti attività:

- Attivazione della connessione tra controller ed apparecchi PROFIBUS progettati
- · Scambio di dati ciclico

4 Descrizione dell'apparecchio

4.1 Informazioni generali sulle unità di collegamento

L'unità di collegamento modulare della famiglia MA 2xxi è un gateway versatile per l'integrazione degli apparecchi Leuze RS 232 (ad es. lettori di codici a barre BCL 22, apparecchi RFID RFM 32,...) nel fieldbus corrispondente. I gateway MA 2xxi sono previsti per l'impiego in ambito industriale con alto grado di protezione. Per i fieldbus comuni sono disponibili diverse varianti di apparecchio. Grazie ad una struttura dei parametri memorizzata per gli apparecchi RS 232 collegabili, la messa in servizio è molto semplice.

4.2 Caratteristiche delle unità di collegamento

Una particolarità della famiglia di apparecchi MA 204i sono i tre modi di funzionamento:

Modalità trasparente

In questo modo operativo l'MA 204i opera come puro gateway con comunicazione automatica dal ed al PLC. Qui non è necessaria nessuna programmazione particolare da parte dell'utente. I dati non vengono tuttavia bufferizzati o salvati temporaneamente, ma solo «inoltrati».

Il programmatore deve prestare attenzione a prelevare tempestivamente i dati dalla memoria di ingresso del PLC, in quanto, diversamente, vengono sovrascritti da nuovi dati.

Modalità di raccolta

In questa modalità operativa i dati e le parti di telegramma vengono salvati temporaneamente nella memoria (buffer) dell'MA e trasmessi, per attivazione bit, all'interfaccia RS 232 o al PLC in un telegramma. In questa modalità è tuttavia necessario programmare l'intero controllore della comunicazione sul PLC.

Questo tipo di funzionamento è utile, per esempio, per telegrammi molto lunghi o quando vengono letti uno o più codici lunghi.

3. Modalità di comando

Questa particolare modalità operativa consente, con i primi byte del campo di dati di trasmettere, per attivazione bit, comandi predefiniti all'apparecchio collegato. A tal fine, a seconda dell'apparecchio, vi sono dei comandi predefiniti (cosiddetti comandi online) mediante il selettore, vedi capitolo 16 «Specifiche per terminali Leuze».

4.3 Struttura dell'apparecchio

L'unità di collegamento modulare MA 204i serve per la connessione diretta di apparecchi Leuze come BCL 8, BCL 22, ecc. al fieldbus. I dati vengono trasmessi dall'apparecchio Leuze attraverso un'interfaccia RS 232 (V.24) all'MA 204i e qui convertiti nel protocollo fieldbus. Il formato dei dati sull'interfaccia RS 232 corrisponde al formato di dati standard:

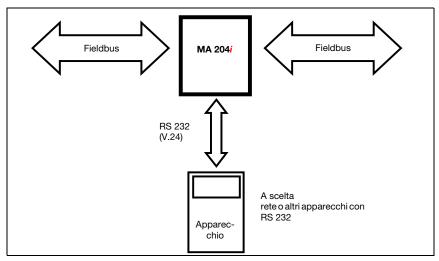


Figura 4.1: Connessione di un apparecchio Leuze (BCL, RFI, RFM, ...) al fieldbus

Il cavo del rispettivo apparecchio Leuze viene introdotto nei passacavi con collegamento a vite PG nell'MA 204*i* e qui collegato alle spine del circuito stampato.

L'MA 204*i* è prevista come gateway per qualsiasi apparecchio RS 232, ad esempio BCL 300i, scanner manuali, bilance o accoppiamento di una rete multiNet.

I cavi RS 232 sono collegabili internamente con spinotti JST. Il cavo può essere introdotto in un passacavo stabile con collegamento a vite PG con tenuta di sporco e con scarico della trazione.

Mediante cavi adattatori con Sub-D 9 o a cablare è possibile collegare anche altri apparecchi RS 232.

4.4 Modi operativi

L'MA 204*i* offre per una rapida messa in servizio, oltre al funzionamento standard, anche il modo operativo «Modalità di assistenza». In questo modo operativo si può, ad es., parametrizzare l'apparecchio Leuze sull'MA 204*i* e testare la comunicazione sul fieldbus. A tal fine occorre un PC/laptop con programma terminale adatto come BCL-Config della Leuze o simile.

Interruttore di assistenza

L'interruttore di assistenza permette di scegliere tra le modalità «funzionamento» e «assistenza». Esistono le seguenti possibilità:

Pos. RUN:

Funzionamento

L'apparecchio Leuze è collegato al fieldbus e comunica con il PLC.

Pos. DEV:

Apparecchio Leuze di assistenza

Il collegamento tra apparecchio Leuze e fieldbus è interrotto. Con l'interruttore in questa posizione si può comunicare direttamente con l'apparecchio Leuze sul gateway di fieldbus via RS 232. Si possono inviare comandi online attraverso l'interfaccia di assistenza, parametrizzare l'apparecchio Leuze mediante il corrispondente software di configurazione BCL- BPS-, ...-Config e far emettere i dati di lettura dell'apparecchio Leuze.

Pos. MA:

Gateway di fieldbus di assistenza

Con l'interruttore in questa posizione il PC/terminale è collegato al gateway di fieldbus. I valori di impostazione attuali dell'MA (ad es. l'indirizzo, i parametri RS 232) possono dunque essere richiamati tramite comando.

Figura 4.2: Posizioni dell'interruttore di assistenza

Avviso!

Se l'interruttore di assistenza si trova su una delle posizioni di assistenza, sul lato anteriore dell'apparecchio lampeggia il LED PWR, vedi capitolo 8.1.2 «Indicatori a LED sull'alloggiamento».

Al controllore viene inoltre segnalato dal bit di assistenza SMA dei byte di stato che l'MA si trova nella modalità di assistenza.

Interfaccia di assistenza

L'interfaccia di assistenza è raggiungibile rimuovendo il coperchio dell'MA 204i e possiede un connettore Sub-D a 9 poli (maschio). Per collegare un PC occorre un cavo RS 232 incrociato che realizza i collegamenti RxD, TxD e GND.

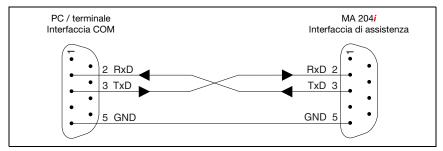


Figura 4.3: Collegamento dell'interfaccia di assistenza ad un PC/terminale

Attenzione!

Perché il PC di assistenza funzioni, i parametri dell'RS 232 devono concordare con quelli dell'MA. L'impostazione standard Leuze dell'interfaccia è 9600Bd, 8N1 e STX, dati, CR, LF.

4.5 Sistemi fieldbus

Per il collegamento a diversi sistemi fieldbus, ad esempio PROFIBUS DP, PROFINET-IO, DeviceNet ed Ethernet, sono disponibili diverse varianti dei prodotti della serie MA 2xxi.

4.5.1 PROFIBUS DP

L'MA 204*i* è un apparecchio PROFIBUS (PROFIBUS DP-V0 secondo IEC 61158) concepito con una velocità di trasmissione di max. 12MBd. La funzionalità dell'apparecchio viene definita mediante i record di parametri raggruppati in moduli. Questi moduli sono contenuti in un file GSD.

I gateway MA 204*i* possono funzionare come nodi di bus nel PROFIBUS. Per il collegamento elettrico della tensione di alimentazione, dell'interfaccia e degli ingressi ed uscite di commutazione, sull'MA 204*i* si trovano diverse spine / prese M12. Per maggiori informazioni sul collegamento elettrico, consultare il capitolo 7.2.

L'MA 204i supporta:

- Funzionalità slave PROFIBUS-DP.
- Strutturazione modulare dei dati I/O
- Riconoscimento automatico della velocità di trasmissione fino a 12 Mbit/s
- SYNC/FREEZE
- FailSafe Mode
- Dati di diagnostica specifici dell'apparecchio
- I&M
- Nessuna modifica dell'indirizzo slave tramite il PROFIBUS

Per ulteriori dettagli vedi il capitolo 12!

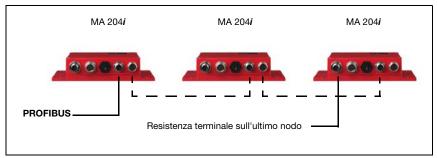


Figura 4.4: PROFIBUS DP

5 Dati tecnici

5.1 Dati generali

Dati elettrici

Tipo di interfaccia 1 PROFIBUS DP,

BUS: 1 x connettore M12 (codifica B),

1 x presa M12 (codifica B)

PWR/IO: 1 x connettore M12 (codifica A),

1 x presa M12 (codifica A)

Protocolli PROFIBUS DP-V0 Velocità di trasmissione 9.6 kBd ... 12 MBd

Tipo di interfaccia 2 RS 232

Velocità di trasmissione 300 bit/s ... 115200 bit/s, impostazione predefinita:

9600

Interfaccia di assistenza RS 232, connettore Sub-D a 9 poli, standard Leuze

Formato dei dati Bit di dati: 8, parità: None, stop bit: 1

Ingresso/uscita di commutazione 1 ingresso di commutazione/1 uscita di commuta-

zione

Tensione a seconda dell'apparecchio

Tensione di esercizio 18 ... 30 VCC (PELV , Class 2) 1)

Potenza assorbita Max. 5VA (senza DEV, corrente assorbita max.

300mA)

ЗА

Carico max. del connettore

(PWR IN/OUT)

Indicatori

LED COM verde Stato bus ok

rosso Errore sul bus

LED PWR verde Power

rosso Errore di gruppo

Dati meccanici

Grado di protezione IP 65 (con connettori M12 avvitati e apparecchio

Leuze collegato)

Peso 700q

Ingombri (A x L x P) 130 x 90 x 41 mm / con piastra: 180 x 108 x 41 mm

Alloggiamento Alluminio pressofuso

Collegamento 2 x M12: BUS IN / BUS OUT PROFIBUS DP

1 connettore: RS 232

1 x M12: Power IN/GND ed ingresso/uscita di

commutazione

1 x M12: Power OUT/GND ed ingresso/uscita di

commutazione

Dati ambientali

Campo della temperatura di esercizio0°C ... +55°C

Campo di temperatura di -20°C ... +60°C

immagazzinamento

Umidità dell'aria Umidità relativa max. 90 %, non condensante

 Vibrazione
 IEC 60068-2-6, Test Fc

 Urto
 IEC 60068-2-27, Test Ea

Compatibilità elettromagnetica EN 61000-6-3:2007 (emissione di disturbi nell'ambito

residenziale, commerciale ed industriale)

EN 61000-6-2:2005 (resistenza alle interferenze in

ambito industriale)

Omologazioni UL 60950-1, CSA C22.2 No. 60950-1 1)

1) Per applicazioni UL: solo per l'utilizzo in circuiti «Class 2» secondo NEC.

5.2 Disegni quotati

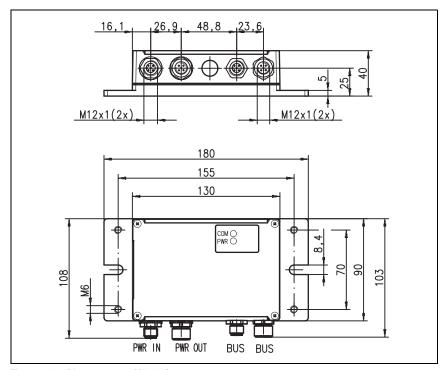


Figura 5.1: Disegno quotato MA 204i

5.3 Elenco dei tipi

Per poter integrare apparecchi RS 232 Leuze nei diversi tipi di fieldbus, vengono offerti i seguenti modelli della famiglia di gateway MA 2xx*i*.

Fieldbus	Tipi di apparecchio	Codice articolo
PROFIBUS DP V0	MA 204 <i>i</i>	50112893
EtherNet TCP/IP	MA 208 <i>i</i>	50112892
PROFINET IO RT	MA 248 <i>i</i>	50112891
DeviceNet	MA 255 <i>i</i>	50114156
CANopen	MA 235 <i>i</i>	50114154
EtherCAT	MA 238 <i>i</i>	50114155
EtherNet/IP	MA 258 <i>i</i>	50114157

Tabella 5.1: Elenco dei tipi MA 2xxi

6 Installazione e montaggio

6.1 Immagazzinamento, trasporto

Attenzione!

L'imballaggio dell'apparecchio per il trasporto e l'immagazzinamento dovrà essere antiurto e protetto dall'umidità. La protezione ottimale è offerta dall'imballaggio originale. Rispettare le condizioni ambientali consentite così come specificate nei dati tecnici.

Disimballaggio

- Fare attenzione che il contenuto dell'imballaggio sia integro. In caso di danno, avvisare il servizio postale o lo spedizioniere ed anche il fornitore.
- Controllare il volume di fornitura sulla base dell'ordinazione e dei documenti di spedizione:
 - Quantità
 - Tipo e modello di apparecchio secondo la targhetta
 - Guida rapida

La targhetta informa sul tipo di MA 2xxi di questo apparecchio. Per informazioni dettagliate si veda il foglietto illustrativo o il capitolo 14.2.

Targhetta dell'unità di collegamento

Figura 6.1: Targhetta dell'apparecchio MA 204i

Conservare l'imballaggio originale per un eventuale immagazzinamento o spedizione successivi.

In caso di domande rivolgersi al fornitore o all'ufficio di vendita Leuze electronic più vicino.

Per lo smaltimento del materiale di imballaggio rispettare le norme locali.

6.2 Montaggio

La piastra di montaggio dei gateway MA 204i può essere montata in due modi diversi:

- Con quattro fori filettati (M6) o
- Con due viti M8 su entrambe le scanalature di fissaggio laterali.

Fissaggio con quattro viti M6 o due viti M8

Figura 6.2: Possibilità di fissaggio

6.3 Posizionamento dell'apparecchio

L'MA 204i deve essere preferibilmente montata in un luogo ben accessibile vicino all'apparecchio di identificazione, in modo da garantirne il buon utilizzo ad esempio per la parametrizzazione dell'apparecchio collegato.

6.3.1 Scelta del luogo di montaggio

Per scegliere il luogo di montaggio adatto va considerata tutta una serie di fattori:

- Lunghezze massime ammissibili dei cavi tra MA 204i ed il sistema host a seconda dell'interfaccia utilizzata.
- Il coperchio dell'alloggiamento deve essere facilmente accessibile per poter raggiungere facilmente le interfacce interne (interfaccia apparecchio per il collegamento degli apparecchi Leuze mediante spine di circuiti stampati, interfaccia di assistenza) e gli altri elementi di controllo.
- Rispettare le condizioni ambientali consentite (umidità, temperatura).
- Minimo rischio per l'MA 204i a causa di collisioni meccaniche o di incastramento di parti.

6.4 Pulizia

Dopo il montaggio, pulire l'alloggiamento dell'MA 204i con un panno morbido. Rimuovere tutti i residui di imballaggio, ad esempio fibre di cartone o sferette di polistirolo.

Attenzione!

Per pulire gli apparecchi non usare detergenti aggressivi come diluenti o acetone.

7 Collegamento elettrico

I gateway del fieldbus MA 2xxi vengono collegati mediante connettori M12 con codifica. Un'interfaccia apparecchio RS 232 consente di collegare i rispettivi apparecchi con connettori di sistema. I cavi dell'apparecchio dispongono di un collegamento a vite PG preparato.

A seconda dell'interfaccia HOST (fieldbus) e della funzione variano la codifica e la versione (presa o connettore a spina). Per la versione esatta vedere la rispettiva descrizione del tipo di apparecchio MA 2xxi.

Avviso!

Per tutti i connettori sono in dotazione le relative controspine e cavi preassemblati. Per maggiori informazioni vedi capitolo 14 «Elenco dei tipi e degli accessori».

Figura 7.1: Ubicazione dei collegamenti elettrici

7.1 Note di sicurezza sul collegamento elettrico

Attenzione!

Prima del collegamento verificare che la tensione di alimentazione corrisponda al valore indicato sulla targhetta.

Il collegamento dell'apparecchio e la pulizia devono essere svolti solo da un elettrotecnico. Prestare attenzione al collegamento corretto alla messa a terra funzionale (FE). Il funzionamento privo di anomalie è assicurato solo se il collegamento alla messa a terra funzionale è stato eseguito correttamente.

Se non è possibile eliminare le anomalie, l'apparecchio deve essere messo fuori servizio e deve essere protetto per impedirne la messa in servizio non intenzionale.

Attenzione!

Per applicazioni UL l'utilizzo è consentito solo in circuiti di Class-2 secondo NEC (National Electric Code).

I gateway di fieldbus sono di classe di protezione III per l'alimentazione tramite PELV (Protective Extra Low Voltage: bassa tensione di protezione).

Avviso!

Il grado di protezione IP 65 si ottiene solo con connettori a spina o coperchi avvitati!

7.2 Collegamento elettrico

L'MA 204i dispone di due connettori M12/prese per l'alimentazione elettrica ognuno/a rispettivamente con codifica A.

Qui vengono collegati l'alimentazione elettrica (**PWR IN**) e gli ingressi/le uscite di commutazione (**PWR OUT** o **PWR IN**). Il numero e la funzione degli ingressi/uscite di commutazione dipende dal terminale collegato. Due ulteriori connettori/prese M12 servono per il collegamento al fieldbus. Questi collegamenti hanno rispettivamente codifica B.

Un'interfaccia interna RS 232 serve per il collegamento dei rispettivi apparecchi Leuze. Un'ulteriore interfaccia interna RS 232 funge da interfaccia di assistenza per la parametrizzazione degli apparecchi collegati via cavo zero modem seriale.

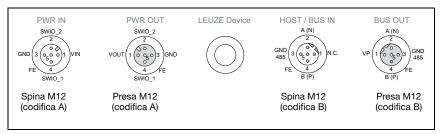


Figura 7.2: Collegamenti dell'MA 204*i*, veduta: in orizzontale su piastra di montaggio

Nelle pagine seguenti vengono descritti in dettaglio i singoli connettori e l'assegnazione dei pin.

7.2.1 PWR IN - Tensione di alimentazione / ingresso/uscita di commutazione

PWR IN (spina a 5 poli, codifica A)						
PWR IN	Pin	Nome	Nota			
SWIO_2	1	VIN	Tensione di alimentazione positiva +18 +30 VCC			
2	2	SWI0_2	Ingresso/uscita di commutazione 2			
$GND \begin{pmatrix} 3 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{pmatrix} \downarrow VIN$	3	GND	Tensione di alimentazione negativa 0VCC			
50	4	SWI0_1	Ingresso/uscita di commutazione 1			
FE 4 SWIO 1	5	FE	Terra funzionale			
Spina M12 (codifica A)	Filettatura	FE	Terra funzionale (alloggiamento)			

Tabella 7.1: Assegnazione dei pin PWR IN

Avviso!

La designazione e la funzione degli SWIO dipende dall'apparecchio collegato. Si prega di osservare a questo proposito la seguente tabella!

Apparecchio	PIN 2	PIN 4
BCL 22	SW0UT_1	SWIN_1
BCL 8	SW_0	SW_I
Scanner manuale/BCL 90	n.c.	n.c.
RFM/RFU/RFI	SW0UT_1	SWIN_1
LSIS 122, LSIS 222, DCR 202i	SWOUT	SWIN
LSIS 4x2, BCL 300i, BCL 500i,	Configurabile	Configurabile
BCL 600i	IO 1 / SWIO 3	
	IO 2 / SWIO 4	
KONTURflex	n.c.	n.c.
ODSL 9, ODSL 96B	Q1	n.c.
ODSL 30	Q1	Active/reference
		(su SWIN_1, PWRIN)

Tabelle 7.1: Funzione specifica all'apparecchio degli SWIO

Tensione di alimentazione

Attenzione!

Per applicazioni UL l'utilizzo è consentito solo in circuiti di Class-2 secondo NEC (National Electric Code).

I gateway di fieldbus sono di classe di protezione III per l'alimentazione tramite PELV (Protective Extra Low Voltage: bassa tensione di protezione).

Collegamento della messa a terra funzionale FE

Avviso!

Prestare attenzione al collegamento corretto alla messa a terra funzionale (FE). Il funzionamento privo di anomalie è assicurato solo se il collegamento alla messa a terra funzionale è stato eseguito correttamente. Tutti i disturbi elettrici (accoppiamenti CEM) vengono scaricati dal collegamento della terra funzionale.

Ingresso / uscita di commutazione

L'MA 204*i* dispone dell'ingresso e dell'uscita di commutazione **SWIO_1** e **SWIO_2**. Questi si trovano sul connettore M12 PWR IN e sulla presa M12 PWR OUT. Il collegamento degli ingressi/uscite di commutazione da PWR IN a PWR OUT può essere interrotto tramite jumper. In questo caso, solo l'ingresso e l'uscita di commutazione su PWR IN sono ancora attivi.

La funzione degli ingressi e delle uscite di commutazione dipende dall'apparecchio Leuze collegato. È possibile trovare informazioni in merito nelle rispettive istruzioni per l'uso.

7.2.2 PWR OUT – Ingresso/uscita di commutazione

PWR OUT (presa a 5 poli, codifica A)						
PWR OUT	Pin	Nome	Nota			
SWIO_2	1	VOUT	Alimentazione elettrica per ulteriori apparecchi (VOUT identica a VIN di PWR IN)			
VOUT $\begin{pmatrix} 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ GND	2	SWI0_2	Ingresso/uscita di commutazione 2			
05	3	GND	GND			
4 FE SWIO 1	4	SWI0_1	Ingresso/uscita di commutazione 1			
Presa M12	5	FE	Terra funzionale			
(codifica A)	Filettatura	FE	Terra funzionale (alloggiamento)			

Tabella 7.2: Assegnazione dei pin PWR IN

Avviso!

Il carico di corrente massimo ammesso del connettore PWR Out ed IN è di 3A. Da questo valore si deve sottrarre il consumo di corrente dell'MA e del terminale collegato.

La funzione degli ingressi e delle uscite di commutazione dipende dall'apparecchio Leuze collegato. È possibile trovare informazioni in merito nelle rispettive istruzioni per l'uso.

Al momento della consegna, gli SWIO 1/2 sono in parallelo su PWR IN/OUT. Questo collegamento può essere interrotto tramite un jumper.

7.3 BUS IN

L'MA 204i mette a disposizione un'interfaccia PROFIBUS DP come interfaccia HOST.

BUS IN (connettore a spina a 5 poli con codifica B)					
HOST / BUS IN	Pin	Nome	Nota		
A (N)	1	N.C.	Non occupato		
	2	A (N)	Dati ricevuti/trasmessi linea A (N)		
GND 485 3 0 0 0 1 N.C.	3	GND 485	Massa di riferimento RS 485 per termina- zione del bus		
FE 4 B (P)	4	B (P)	Dati ricevuti/trasmessi linea B (P)		
Connettore a spina M12	5	FE	Terra funzionale / schermatura		
(codifica B)	Filettatura	FE	Terra funzionale (alloggiamento)		

Tabella 7.3: Assegnazione dei pin PROFIBUS DP BUS IN

Per il collegamento host dell'MA 204i utilizzare preferibilmente i cavi preassemblati KB PB-xxxxx-Bx, «Cavo di collegamento al bus per l'MA 204i» a pagina 78.

7.4 BUS OUT

BUS OUT (presa a 5 poli, codifica B)					
BUS OUT	Pin	Nome	Nota		
A (N)	1	VCC	+5 V CC per collegamento del bus (terminazione)		
VCC 1 0 0 0 3 GND 485	2	A (N)	Dati ricevuti/trasmessi linea A (N)		
VCC 1 (0 050)3 GND 485	3	GND 485	Massa di riferimento RS 485 per termina- zione del bus		
B (P) Presa M12 (codifica B)	4	B (P)	Dati ricevuti/trasmessi linea B (P)		
	5	FE	Terra funzionale / schermatura		
	Filettatura	FE	Terra funzionale (alloggiamento)		

Tabella 7.4: Assegnazione dei pin PROFIBUS DP BUS OUT

Avviso!

Attenzione ad una schermatura sufficiente. Sugli apparecchi ed i cavi preassemblati offerti da Leuze electronic la schermatura è sul pin 1.

7.4.1 Terminazione del PROFIBUS

Come ultimo nodo fisico PROFIBUS, è necessario terminarlo con una resistenza terminale (vedere «Accessorio: resistenza terminale» a pagina 75) sulla presa BUS OUT.

Per il collegamento host dell'MA 204i utilizzare preferibilmente i cavi preassemblati KB PB-xxxxx-Sx, «Cavo di collegamento al bus per l'MA 204i» a pagina 78.

7.5 Interfacce apparecchi

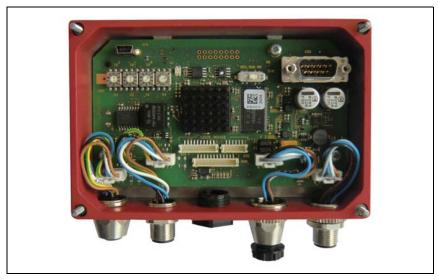


Figura 7.3: MA 204i aperta

7.5.1 Interfaccia apparecchio RS 232 (accessibile dopo l'apertura dell'apparecchio, interna)

L'interfaccia apparecchio è prevista per i connettori di sistema (spine del circuito stampato) degli apparecchi Leuze RFI xx, RFM xx, BCL 22.

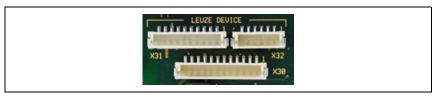


Figura 7.4: Interfaccia apparecchio RS 232

Gli apparecchi standard vengono collegati ad X31 o X32 con un connettore a 6 o a 10 poli. Per scanner manuali, BCL 8 e BPS 8 con alimentazione di 5VCC (alimentazione elettrica dall'MA) sul pin 9, è disponibile la connessione a 12 poli X30 del circuito stampato.

Un cavo supplementare (cfr. «Elenco dei tipi e degli accessori» a pagina 75) permette di realizzare la connessione di sistema su M12 o su Sub-D a 9 poli, ad esempio per scanner manuali.

7.5.2 Interfaccia di assistenza (interna)

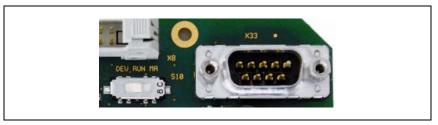


Figura 7.5: Interruttore ed interfaccia di assistenza RS 232

Dopo l'attivazione, quest'interfaccia consente l'accesso tramite l'RS 232 all'apparecchio Leuze (DEV) collegato e all'MA per la parametrizzazione tramite Sub-D a 9 poli. Durante l'accesso, il collegamento tra l'interfaccia fieldbus e quella dell'apparecchio è disattivata. Tuttavia il fieldbus non si interrompe.

L'interfaccia di assistenza è raggiungibile rimuovendo il coperchio dell'MA 204i e possiede un connettore Sub-D a 9 poli (maschio). Per collegare un PC occorre un cavo RS 232 incrociato che realizza i collegamenti RxD, TxD e GND. Un handshake hardware tramite RTS, CTS non viene supportato sull'interfaccia di assistenza.

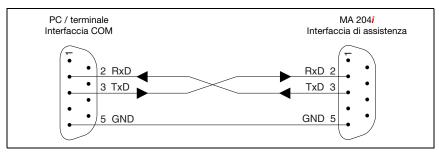


Figura 7.6: Collegamento dell'interfaccia di assistenza ad un PC/terminale

Attenzione!

Perché il PC di assistenza funzioni, i parametri dell'RS 232 devono concordare con quelli dell'MA. L'impostazione standard Leuze dell'interfaccia è 9600Bd, 8N1 e STX, dati, CR, LF.

Avviso!

Per la configurazione degli apparecchi collegati all'interfaccia esterna come ad es. BCL 8 (spinotto JST «X30»), è necessario un cavo appositamente configurato. L'interruttore di assistenza deve trovarsi nella posizione «DEV» o «MA» (apparecchio Leuze di assistenza/MA).

8 Indicatori di stato ed elementi di controllo

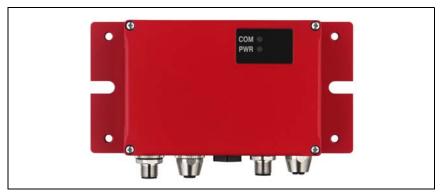


Figura 8.1: Indicatori a LED dell'MA 204i

8.1 Indicatori di stato a LED

8.1.1 Indicatori a LED sulla scheda

LED (stato)

	Spento	Apparecchio OFF - Nessuna tensione di esercizio o apparecchio difettoso
•	Verde, costantemente acceso	Apparecchio OK - Stato di stand-by
•	Arancione, costantemente acceso	Errore apparecchio/firmware disponibile
- \	Verde/arancione, lampeggiante	Apparecchio in modalità di inizializzazione - Nessuno firmware

8.1.2 Indicatori a LED sull'alloggiamento

LED COM

сом	Verde, costantemente acceso	rite acceso Funzionamento con bus OK - Funzionamento di rete ok - Collegamento e comunicazione con l'host instaurati			
сом -	Verde, lampeggiante	Apparecchio OK - Nessun collegamento all'host - Terminazione manca			
сом •	Rosso, costantemente acceso	Errore di rete - Anomalie su PROFIBUS - Nessun collegamento instaurato - Nessuna comunicazione possibile			
сом -	Rosso, lampeggiante	Superamento del tempo al momento dell'instaurazione del collegamento			
COM-	Rosso/verde, lampeggiante/spento	Autotest dopo l'accensione			
LED PWR					
PWR O	Spento	Apparecchio OFF - Nessuna tensione di esercizio o errore dell'apparecchio			
PWR	Verde, costantemente acceso	Apparecchio OK - Autotest concluso correttamente - Stand-by			
PWR -	Verde, lampeggiante	Apparecchio OK, apparecchio in modalità assistenza			
PWR -	Rosso, lampeggiante	Errore di configurazione - Velocità di trasmissione o indi-			

rizzo errato

8.2 Interfacce interne ed elementi di controllo

8.2.1 Panoramica degli elementi di controllo

Segue la descrizione degli elementi di controllo dell'MA 204i. La figura illustra l'MA 204i con coperchio aperto.

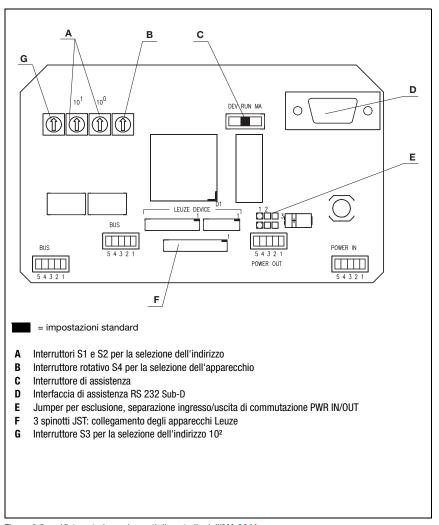


Figura 8.2: Vista anteriore: elementi di controllo dell'MA 204i

Descr. elemento scheda	Funzione		
X1 Tensione di esercizio	PWR IN Connettore M12 per tensione di esercizio (18 30 VCC) MA 204 ⁱ e apparecchi Leuze xx collegato		
X2 Tensione di uscita	PWR OUT Connettore M12 per ulteriori apparecchi (MA, BCL, sensore,) VOUT = VIN max. 3A		
X4 Interfaccia host	BUS IN Interfaccia host per il collegamento al fieldbus		
X5 Interfaccia host	BUS OUT Seconda interfaccia BUS per la realizzazione di una rete con più nodi nella topo- logia lineare		
X30 Apparecchio Leuze	Spinotto JST con 12 pin Collegamento degli apparecchi Leuze con 5V / 1A (BCL 8, BPS 8 e scanner manuale)		
X31 Apparecchio Leuze	Spinotto JST con 10 pin Collegamento degli apparecchi Leuze (BCL, RFI, RFM,) Pin VINBCL con impostazione standard = V+ (18 - 30V)		
X32 Apparecchio Leuze	Spinotto JST con 6 pin Collegamento degli apparecchi Leuze (BCL, RFI, RFM,) Pin VINBCL con impostazione standard = V+ (18 - 30V)		
X33 Interfaccia di assistenza RS 232	Connettore Sub-D a 9 poli Interfaccia RS 232 per servizio di assistenza/setup. Consente di collegare un PC tramite cavo zero modem seriale per la configurazione dell'apparecchio Leuze e dell'MA 204 <i>i</i> .		
S4 Interruttore rotativo	Interruttore rotativo (0 \dots F) per la selezione dell'apparecchio Impostazione standard = 0		
S10 DIP-Switch	Interruttore di assistenza Commutazione tra apparecchio Leuze di assistenza (DEV), gateway di fieldbus di assistenza (MA) e funzionamento (RUN). Impostazione standard = funzionamento.		
J1, J2 Jumper	Esclusione, separazione ingresso/uscita di commutazione (interruzione del collegamento tra i due connettori M12 PWR di SWIO 1 e SWIO 2)		
S1 Interruttore rotativo	Interruttore rotativo (0 9) per la selezione dell'indirizzo 10^0 Impostazione standard: posizione 0		
S2 Interruttore rotativo	Interruttore rotativo (0 9) per la selezione dell'indirizzo 10^1 Impostazione standard: posizione 0		
S3 Interruttore rotativo	Interruttore per la selezione dell'indirizzo – Commutazione tra l'intervallo di indirizzi 099 o 100127 ; impostazione standard: intervallo di indirizzi $= 099$		

8.2.2 Collegamenti con connettori X30 ...

Per il collegamento del rispettivo apparecchio Leuze via RS 232 sono disponibili nell'MA 204i le spine del circuito stampato X30 ... X32.

Figura 8.3: Collegamenti per apparecchi Leuze

Attenzione!

All'MA 204i non devono essere collegati contemporaneamente più apparecchi Leuze, in quanto può essere gestita una sola interfaccia RS 232.

8.2.3 Interfaccia di assistenza RS 232 - X33

L'interfaccia RS 232 **X33** permette la configurazione dell'apparecchio Leuze e dell'MA 204*i* tramite il PC collegato via cavo zero modem seriale.

Assegnazione dei pin X33 - spina di assistenza

SERVICE (connettore SUB-D a 9 poli)						
X33 •	Pin	Nome	Nota			
0.	2	RXD	Receive Data			
O GAGA	3	TXD	Transmit Data			
	5	GND	Terra funzionale			

Tabella 8.1: Assegnazione dei pin SERVICE

8.2.4 Interruttore di assistenza S10

Con il DIP-Switch **S10** si può scegliere tra i modi operativi «Funzionamento» o «Assistenza», cioè si commuta tra le seguenti opzioni:

- Funzionamento (RUN) = impostazione standard
- Apparecchio Leuze di assistenza (DEV)
- Gateway di fieldbus di assistenza (MA)

Figura 8.4: DIP-Switch assistenza - funzionamento

Per ulteriori informazioni sulle rispettive opzioni, vedi capitolo 4.4 «Modi operativi».

8.2.5 Interruttore rotativo S4 per la selezione dell'apparecchio

L'interruttore rotativo **S4** permette di selezionare i terminali Leuze.

Figura 8.5: Interruttore rotativo per la selezione dell'apparecchio

Qui di seguito sono indicate le posizioni dell'interruttore assegnate agli apparecchi Leuze:

Apparecchio Leuze	Posizione dell'interruttore		
Impostazione standard			
Altri apparecchi RS 232 come	0		
ad es. KONTURflex QUATTRO			
BCL 8	1		
BCL 22	2		
n.c.	3		
BCL 300i, BCL 500i,	4		
BCL 600i	4		
BCL 90, BCL 900i	5		
LSIS 122, LSIS 222	6		

Apparecchio Leuze	Posizione dell'interruttore			
LSIS 4x2i, DCR 202i	7			
Scanner manuale	8			
RFID (RFI xx, RFM xx, RFU xx)	9			
BPS 8	Α			
ODS 9, ODSL 30, ODSL 96B, BPS 300i	В			
MA 3x	С			
Reset sull'impostazione pre- definita	F			

Il gateway viene impostato tramite la posizione dell'interruttore sull'apparecchio Leuze. Se la posizione dell'interruttore viene modificata, l'apparecchio deve essere riavviato, in quanto la posizione dell'interruttore viene interrogata solo al riavviamento della tensione.

Avviso

 \prod

Nella posizione «0» dell'interruttore, deve essere rispettato un intervallo di > 20 ms per la distinzione di 2 telegrammi.

I parametri dei terminali Leuze sono descritti nel capitolo 16.

Via file GSD è possibile impostare altri parametri come la velocità di trasmissione e la modalità dati con la validazione «USE GSD settings». Il data frame ed eventualmente la lunghezza sono specificati dalla posizione dell'interruttore.

8.2.6 Interruttore per la selezione dell'indirizzo nel fieldbus

Per l'impostazione dell'indirizzo di stazione, il gateway dispone degli interruttori **S1**, **S2** e **S3** (unità, decine e centinaia).

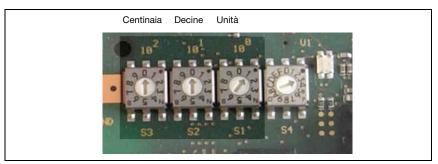


Figura 8.6: Interruttore rotativo per l'impostazione dell'indirizzo

Per informazioni più dettagliate in merito ai rispettivi intervalli degli indirizzi ed al procedimento di indirizzamento vedere il capitolo 12.1.

9 Configurazione

La configurazione dell'MA 204*i* avviene per mezzo del file GSD mediante il manager del controllore. L'apparecchio collegato viene configurato normalmente tramite l'interfaccia di assistenza dell'MA con l'ausilio di un programma di configurazione idoneo.

I rispettivi programmi di configurazione – ad es. il BCL Config per i lettori di codici a barre, l'RF-Config per gli apparecchi RFID, ecc. - e la documentazione corrispondente sono a disposizione sulla homepage di Leuze all'indirizzo **www.leuze.com** nella rispettiva area di download.

Per visualizzare i testi della guida deve essere installato un programma di visualizzazione di file PDF (non in dotazione). Per informazioni importanti sulla parametrizzazione o sulle funzioni parametrizzabili vedere la descrizione del rispettivo apparecchio.

9.1 Collegamento dell'interfaccia di assistenza

Il collegamento dell'interfaccia di assistenza RS 232 avviene, dopo l'apertura del coperchio dell'MA 204*i*, mediante il Sub-D a 9 poli ed un cavo zero modem (RxD/TXD/GND) incrociato. Per il collegamento vedere il capitolo «Interfaccia di assistenza (interna)» a pagina 33.

L'interfaccia di assistenza viene attivata mediante l'interruttore di assistenza e, con l'impostazione «DEV» (apparecchio Leuze) o «MA» (gateway), attiva un collegamento diretto con l'apparecchio collegato.

9.2 Lettura delle informazioni in modalità di assistenza

- Dopo l' attivazione, posizionare l'interruttore di assistenza dell'MA dalla posizione dell'interruttore «RUN» alla posizione «MA».
- 🔖 Avviare ora uno dei programmi terminali seguenti, ad es. BCL, RF, BPS Config.

In alternativa si può utilizzare anche il tool «Hyperterminal» di Windows.

- Avviare il programma.
- 🔖 Selezionare la porta COM corretta (ad es. COM1) ed impostare l'interfaccia come segue:

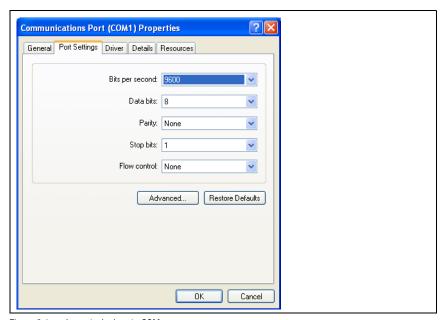


Figura 9.1: Impostazioni porta COM

Avviso!

Si prega di tenere presente che per poter comunicare con l'apparecchio Leuze collegato il framing STX, dati, CR, LF deve essere impostato nel programma terminale del PC.

Comandi

Inviando i seguenti comandi è possibile richiamare le informazioni dell'MA 204i.

V	Informazioni generali di assistenza.
S	Consentire la modalità di memorizzazione per gli ultimi frame.
I	La modalità di memorizzazione mostra gli ultimi frame RX e TX per ASCII e fieldbus.

Tabella 9.1: Comandi disponibili

Informazioni

Versione	Informazioni sulla versione.
Firmware Date	Data del firmware.

Tabella 9.2: Informazioni generali firmware

Selected Scanner	Apparecchio Leuze attualmente selezionato (selezionato tramite interruttore S4).
Gateway-Mode	Modalità trasparente o di raccolta.
Ring-Buffer fill level	Riempimento attuale della memoria ad anello in modalità di raccolta (ASCII->fieldbus). Max. 1024 byte.
Received ASCII Frames	Numero di frame ASCII ricevuti.
ASCII Framing Error (GW)	Numero di errori di framing ricevuti.
Number of Received CTB's	Numero dei comandi CTB.
Number of Received SFB's	Numero dei comandi SFB.
Command-Buffer fill level	Riempimento attuale della memoria ad anello in modalità di comando (fieldbus->ASCII). Max. 1024 byte.
Number of Received Transparent Frames	Numero di frame fieldbus contenuti senza CTB/SFB.
Number of sent Fieldbus Frames	Numero di frame inviati mediante il fieldbus.
Number of invalid commands	Numero dei comandi non validi.
Number of ASCII stack send errors	Numero di frame che la memoria ASCII non ha potuto inviare.
Number of good ASCII send frames	Numero di frame che la memoria ASCII ha inviato con successo.

Tabella 9.3: Informazioni generali sul gateway

ND	Stato attuale bit ND.
W-Ack	Stato attuale bit W-Ack.
R-Ack	Stato attuale bit R-Ack.
Dataloss	Stato attuale bit Dataloss.
Ringbuffer Overflow	Stato attuale bit Ringbuffer Overflow.
DEX	Stato attuale bit DEX.
BLR	Stato attuale bit BLR.

Tabella 9.4: Stati attuali dei bit di stato e di controllo

ASCII-Start-Byte	Byte di start attualmente configurato (in funzione della posizione dell'interruttore S4).
ASCII-End-Byte1	Byte di stop 1 attualmente configurato (in funzione della posizione dell'interruttore S4).
ASCII-End-Byte2	Byte di stop 2 attualmente configurato (in funzione della posizione dell'interruttore S4).
Stato dell'avviamento a caldo ASCII	Indica se la memoria ASCII ha riconosciuto ed accettato una configurazione valida.
ASCII baud rate	Velocità di trasmissione attualmente configurata (in funzione della posizione dell'interruttore S4).

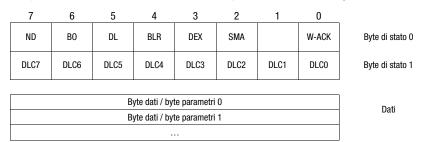
Tabella 9.5: Configurazione ASCII

DPS reconfiguration request	Numero di riconfigurazioni dello slave PROFIBUS.		
DPS-Input-Data-Length	Lunghezza di frame di ingresso PROFIBUS attualmente configurata nello slot 1.		
DPS-Output-Data-Length	Lunghezza di frame di uscita PROFIBUS attualmente configurata nello slot 2.		
DPS-Address	Indirizzo PROFIBUS impostato.		
DPS-Identification-Number	Numero di identificazione dello slave PROFIBUS.		

Tabella 9.6: Configurazione PROFIBUS (solo con apparecchi MA 204i)

10 Telegramma

10.1 Struttura del telegramma di fieldbus


Tutte le operazioni vengono eseguite dai bit di controllo e di stato. A tal fine vengono offerti 2 byte di informazioni di controllo e 2 byte di informazioni di stato. I bit di controllo sono parte del modulo di uscita ed i bit di stato del byte di ingresso. I dati iniziano dal 3° byte.

Se la lunghezza dati effettiva è maggiore della lunghezza dati configurata nel gateway, viene trasmessa solo una parte dei dati ed i dati restanti vanno perduti. In questo caso viene impostato il bit DL (Data Loss).

Tra PLC -> gateway fieldbus viene utilizzata la seguente struttura di telegramma:

7	6	5	4	3	2	1	0	
ND	Indirizzo 4	Indirizzo 3	Indirizzo 2	Indirizzo 1	Indirizzo 0	Broadcast	Modalità di comando	Byte di controllo 0
				СТВ	SFB		R-ACK	Byte di controllo 1
]
								1
Byte dati / byte parametri 0							Dati	
Byte dati / byte parametri 1								

Tra gateway fieldbus -> PLC viene utilizzata questa struttura del telegramma:

Tra il gateway di fieldbus ed il terminale Leuze viene ora trasmessa solo la parte di dati con il frame corrispondente (ad es. STX, CR & LF). I due byte di controllo vengono elaborati dal gateway di fieldbus.

I corrispondenti bit di controllo e di stato ed il loro significato vengono specificati nella parte 10.2 e parte 10.3.

Per ulteriori informazioni sul broadcast dei byte di controllo e sul bit di indirizzo 0 ... 4 vedere il capitolo «Unità di collegamento modulare MA 3x (posizione C dell'interruttore S4)» a pagina 95.

Dati

10.2 Descrizione dei byte di ingresso (byte di stato)

10.2.1 Struttura e significato dei byte di ingresso (byte di stato)

	0	1	2	3	4	5	6	7	
Byte di stato 0	W-ACK		SMA	DEX	BLR	DL	В0	ND	
Byte di stato 1	DLC0	DLC1	DLC2	DLC3	DLC4	DLC5	DLC6	DLC7	

Byte dati / byte parametri 0
Byte dati / byte parametri 1

Tabella 10.1: Struttura dei byte di ingresso (byte di stato)

Bit del byte di ingresso (byte di stato) 0

N. bit	Designazione	Significato
0	W-ACK	Write-Acknowledge (conferma scrittura) in caso di utilizzo del buffer
2	SMA	Service Mode Active (modalità di assistenza attivata)
3	DEX	Data exist (dati nel buffer di trasmissione)
4	BLR	Next Block Ready (nuovo blocco pronto)
5	DL	Data Loss (perdita di dati)
6	В0	Buffer Overflow (overflow buffer)
7	ND	New Data (nuovi dati) solo nella modalità trasparente

Bit del byte di ingresso (byte di stato) 1

N. bit	Designazione	Significato
0 7	DLCO DLC7	Data Length Code (lunghezza dei dati utili seguenti)

O Avvis

T-Bit significa toggle bit, cioè questo bit modifica il suo stato («0» \rightarrow «1» o «1» \rightarrow «0») ad ogni evento.

10.2.2 Descrizione dettagliata dei bit (byte di ingresso 0)

Bit 0: Write-Acknowledge: W-ACK

Questo bit è rilevante solo per la scrittura a blocchi di dati slave, vedere il capitolo 11.1.2 (dati del buffer sull'RS 232). Subisce un toggle quando i dati vengono inviati dal PLC con CTB o SFB all'MA.

Dati di ingresso	Descrizione	Ind.	Tipo di dati	Campo di valori	Valore pred.
W-ACK	Write-Acknowledge (conferma scrittura) Write-Handshake Indica che i dati sono stati inviati correttamente dal PLC al gateway. Write-Acknowledge viene indicata tramite questo bit. Il bit W-ACK viene sottoposto a toggle dal gateway di fieldbus ogni volta in cui il comando di trasmissione è stato eseguito correttamente. Ciò vale sia per la trasmissione dei dati nel buffer di trasmissione con il comando STB e per la trasmissione del contenuto del buffer di trasmissione con il comando SFB.	0.0	Bit	0 -> 1: scrittura corretta 1 -> 0: scrittura corretta	0

Bit 2: Service Mode Active: SMA

Dati di ingresso	Descrizione		Tipo di dati	Campo di valori	Valore pred.
SMA	Service Mode Active (SMA) Il bit SMA viene settato quando l'interruttore di assistenza si trova su «MA» o su «DEV», cioè quando l'apparecchio si trova o in modalità di assistenza del gateway di fieldbus o di apparecchio Leuze. Ciò viene segnalato anche dal lampeggio del LED PWR sul lato anteriore dell'apparecchio. Al ritorno al modo operativo normale «RUN», il bit viene resettato.	0.2	Bit	0: apparecchio in modalità operativa 1: apparecchio in modalità assistenza	Oh

Bit 3: Data exist: DEX

Questo bit è rilevante solo per la lettura di dati slave in modalità di raccolta, vedere capitolo 11.1.1.

Dati di ingresso	Descrizione		Tipo di dati	Campo di valori	Valore pred.
DEX	Data exist (dati nel buffer di trasmissione) Indica che nel buffer di trasmissione sono presenti altri dati pronti per essere trasmessi al controllore. Questo flag bit viene settato dal gateway del fieldbus sempre su «1» (High) fino a quando i dati sono nel buffer.	0.3		0: nessun dato nel buffer di trasmis- sione 1: altri dati nel buffer di trasmissione	Oh

Bit 4: Next block ready to transmit: BLR

Questo bit è rilevante solo per la lettura di dati slave in modalità di raccolta, vedere capitolo 11.1.1.

Dati di ingresso	Descrizione	Ind.	Tipo di dati	Campo di valori	Valore pred.
BLR	Next block ready to transmit (nuovo blocco pronto) Il toggle bit Block Ready cambia lo stato ogni volta in cui il gateway di fieldbus preleva dati dal buffer di ricezione e li registra nel relativo byte dati di ingresso. In questo modo si segnala al master che la quantità di dati nel byte dati di ingresso indicata dai bit DLC proviene dal buffer dati ed è attuale.	0.4	Bit	0 -> 1: dati trasmessi 1 -> 0: dati trasmessi	0

Bit 5: Data Loss: DL

Questo bit è importante in modalità trasparente ed in modalità di raccolta per il monitoraggio della trasmissione di dati.

Dati di ingresso	Descrizione	Ind.	Tipo di dati	Campo di valori	Valore pred.
DL	Data Loss (Monitoraggio trasmissione di dati) Questo bit viene settato fino ad un reset (modello di bit vedi capitolo 10.4 «Funzione di RESET / Cancellazione della memoria») in caso i dati del gateway non abbiano potuto essere inviati al PLC e siano andati perduti. Inoltre, questo bit viene settato se il data frame configurato (ad. es. 8 bit) è inferiore ai dati da trasmettere al PLC (ad es. codice a barre a 20 cifre). In questo caso al PLC vengono inviate le prime 8 cifre, il resto vene tagliato e va perduto. In questo modo il bit Data Loss viene settato.	0.6	Bit	0->1: Data Loss	0

Bit 6: Buffer Overflow: BO

Dati di ingresso	Descrizione	Ind.	Tipo di dati	Campo di valori	Valore pred.
во	Buffer Overflow (overflow (overflow buffer) Questo bit di flag viene settato su high («1») in caso di overflow del buffer. Il bit viene resettato automaticamente quando il buffer ha di nuovo memoria libera. Finché il bit BO è settato, il segnale RTS dell'interfaccia seriale viene disattivato. La capacità di memoria del gateway per dati del PLC e del terminale Leuze è pari rispettivamente a 1 kbyte.	0.6	Bit	0->1: overflow buf- fer 1->0: buffer OK	0

Bit 7: New Data: ND

Questo bit è rilevante solo in modalità trasparente.

Dati di ingresso	Descrizione		Tipo di dati	Campo di valori	Valore pred.
ND	New Data (nuovi dati) Questo bit subisce un toggle per ogni record di dati inviato dal gateway al PLC. Con esso si possono distinguere diversi record di dati uguali inviati al PLC.	0.7		0->1; 1->0: nuovi dati ad ogni cambiamento di stato	0

10.2.3 Descrizione dettagliata dei bit (byte di ingresso 1)

Bit 0 ... 7: Data Length Code: DLC0 ... DLC7

Dati di ingresso	Descrizione	Ind.	Tipo di dati	Campo di valori	Valore pred.
DLCO DLC7	Data Length Code (numero di dati utili nel byte) In questi bit è memorizzato il numero dei byte di dati utili trasmessi in seguito al PLC.	1.0 1.7	Bit	1 _h (00001 _b) FF _h (00255 _b)	0h (00000b)

10.3 Descrizione dei byte di uscita (byte di controllo)

10.3.1 Struttura e significato dei byte di uscita (byte di controllo)

7	6	5	4	3	2	1	0	
ND	Indirizzo 4	Indirizzo 3	Indirizzo 2	Indirizzo 1	Indirizzo 0	Broadcast	Modalità di comando	Byte di controllo 0
				СТВ	SFB		R-ACK	Byte di controllo 1

Byte dati 1	
Byte dati 2	Dati

Tabella 10.2: Struttura dei byte di uscita (byte di controllo)

Bit del byte di uscita (byte di controllo) 0

N. bit	Designazione	Significato
0	Modalità di comando	Modalità di comando
1	Broadcast	Broadcast (rilevante solo con una MA 3x collegata)
2 6	Indirizzo 0 4	Bit di indirizzo 0 4 (rilevante solo con una MA 3x collegata)
7	ND	New Data

Bit del byte di uscita (byte di controllo) 1

N. bit	Designazione	Significato
0	R-ACK	Read-Acknowledge
2	SFB	Send Data from Transmit Buffer
3	СТВ	Copy To Transmit-Buffer

10.3.2 Descrizione dettagliata dei bit (byte di uscita 0)

Bit 0: Modalità di comando: Modalità di comando

Dati di uscita	Descrizione		Tipo di dati		Valore pred.
Modalità di comando	Modalità di comando Con questo bit si attiva la modalità di comando. Nella moda- lità di comando il PLC non trasmette dati al terminale Leuze attraverso il gateway. Nella modalità di comando, nel campo dati e parametri si possono settare diversi bit che eseguono comandi in funzione dell'apparecchio Leuze scelto. Per infor- mazioni più dettagliate vedi capitolo 11.1.3 «Modalità di comando».	0.0		0: standard, tra- smissione di dati trasparente 1: modalità di comando	0

I 2 bit di controllo («Bit 1: Broadcast: Broadcast» a pagina 49 e «Bit 2 ... 6: Bit di indirizzo 0 .. 4: Indirizzo 0 .. 4: Indirizzo 0 .. 4» a pagina 49) seguenti sono rilevanti solo quando è collegata un'MA 3x. Per gli altri apparecchi questi campi vengono ignorati.

Bit 1: Broadcast: Broadcast

Dati di uscita	Descrizione	Ind.	Tipo di dati	Campo di valori	Valore pred.
Broadcast	Broadcast Un broadcast funziona solo con una rete multiNet collegata tramite l'MA 3x. Attivando questo bit, il gateway antepone automaticamente il comando broadcast «OOB» ai dati. Que- sto comando è indirizzato a tutti i nodi di multiNet.	0.1	Bit	0: nessun broadcast 1: broadcast	0

Bit 2 ... 6: Bit di indirizzo 0 .. 4: Indirizzo 0 .. 4

Dati di uscita	Descrizione	Ind.	Tipo di dati	Campo di valori	Valore pred.
Indirizzo 0 4	Bit di indirizzo 0 4 In modo equivalente al comando broadcast è possibile con- trollare singoli apparecchi in multiNet tramite l'MA 3x. In questo caso al telegramma del campo dati viene anteposto l'indirizzo corrispondente dell'apparecchio.	0.2 0.6	Bit	00000: ind. 0 00001: ind. 1 00010: ind. 2 00011: ind. 3	0

Bit 7: New Data: ND

Dati di uscita	Descrizione	Ind.	Tipo di dati	Campo di valori	Valore pred.
ND	New Data Questo bit è necessario per inviare diversi dati uguali in sequenza.	0.7	Bit	0->1; 1->0: nuovi dati ad ogni cambiamento di stato	0

10.3.3 Descrizione dettagliata dei bit (byte di uscita 1)

Bit 0: Read-Acknowledge: R-ACK

Questo bit è rilevante solo per la scrittura a blocchi di dati slave (modalità di raccolta), vedere il capitolo 11.1.2.

Dati di uscita	Descrizione	Ind.	Tipo di dati	Campo di valori	Valore pred.
R-ACK	Read-Acknowledge (conferma di lettura) Toggle bit: segnala al gateway di fieldbus che i «vecchi» dati sono stati elaborati e possono essere ricevuti nuovi dati. Al termine del ciclo di lettura occorre eseguire il toggle di questo bit per poter ricevere il record di dati successivo. Questo toggle bit viene commutato dal master dopo la lettura di dati di ricezione validi dal byte di ingresso ed il blocco dati successivo può essere richiesto. Quando il gateway riconosce un cambiamento di segnale sul bit R-ACK, i byte successivi vengono scritti automaticamente dal buffer di ricezione alle parole dati di ingresso ed il bit BLR subisce il toggle. Un ulteriore toggle cancella la memoria (su 00h).		Bit	0->1 0 1 -> 0: scrittura cor- retta & pronto alla trasmissione suc- cessiva	0

Bit 2: Send Data from Buffer: SFB

Questo bit è rilevante solo per la scrittura a blocchi di dati slave (modalità di raccolta), vedere il capitolo 11.1.2.

Dati di uscita	Descrizione	Ind.	Tipo di dati	Campo di valori	Valore pred.
SFB	Send Data from Buffer (invio di dati dal buffer di trasmissione del gateway all'RS 232) Toggle bit: modificando questo bit, tutti i dati copiati tramite il bit CTB nel buffer di trasmissione del gateway di fieldbus vengono trasmessi all'interfaccia RS 232 o all'apparecchio Leuze collecato.	1.2	Bit	0->1: dati sulla RS 232 1->0: dati sulla RS 232	0

Bit 3: Copy to Transmit Buffer: CTB

Questo bit è rilevante solo per la scrittura a blocchi di dati slave (modalità di raccolta), vedere il capitolo 11.1.2.

Dati di uscita	Descrizione	Ind.	Tipo di dati	Campo di valori	Valore pred.
СТВ	Copy to Transmit Buffer (trasmissione di dati nel buffer di trasmissione) Toggle bit: modificando questo bit, i dati vengono scritti dal PLC al buffer di trasmissione del gateway di fieldbus. Impiego, ad esempio, per lunghe stringhe di comando da trasmettere all'apparecchio di identificazione collegato. Il toggle bit CTB viene commutato ogni volta in cui i dati di trasmissione non devono essere inviati direttamente via interfaccia seriale, ma devono essere trasmessi nel buffer di trasmissione.	1.3	Bit	0 -> 1: dati nel buf- fer 1 -> 0: dati nel buf- fer	0

Avviso!

Il cambiamento di stato del bit CTB segnala all'MA che i dati vanno nel buffer. Rispettare quindi assolutamente l'ordine di successione!

In caso di non utilizzo del CTB, il telegramma (che corrisponde ad 1 ciclo) viene trasmesso direttamente all'interfaccia RS 232. Fare attenzione alla completezza!

10.4 Funzione di RESET / Cancellazione della memoria

Per alcune applicazioni può essere utile resettare il buffer dell'MA (in modalità di raccolta) o il bit di stato.

A questo scopo può essere trasmesso dal PLC il seguente modello di bit (se >20 ms):

Byte di controllo 0: 10101010 (AAh) Byte di controllo 1: 10101010 (AAh)

OUT byte dati 0/byte parametri 0: AAh OUT byte dati 1/byte parametri 1: AAh

Questo permette di impostare la memoria o i bit di stato/di controllo su 00h.

Si prega di tenere presente che, in modalità di raccolta, può risultare eventualmente necessario aggiornare l'immagine dei dati tramite il toggle di R-ACK.

11 Modalità

11.1 Funzionamento dello scambio di dati

Il gateway di fieldbus possiede due diverse modalità selezionate tramite PLC:

Modalità trasparente (impostazione standard)

Nella modalità «trasparente» tutti i dati vengono inviati dal terminale seriale 1:1 ed immediatamente al PLC. Qui l'utilizzo di bit di controllo e di stato non è necessario. Tuttavia, vengono trasmessi solo i byte di dati possibili per **un** ciclo di trasmissione, gli altri andranno perduti.

L'intervallo tra due telegrammi consecutivi (senza frame) deve essere superiore a 20 ms, in quanto, diversamente, non è definita una chiara separazione. Come contenuto dei dati vengono solitamente attesi caratteri ASCII. Di conseguenza, caratteri di controllo diversi nel campo di dati possono essere considerati dall'MA in determinate circostanze come non validi ed essere tagliati. Con 00_h nel campo di dati, l'MA taglia il telegramma, in quanto i byte inutili sono anch'essi riempiti con 00_h .

Modalità di raccolta

Nella modalità di «raccolta» i dati del terminale seriale vengono memorizzati temporaneamente nel gateway di fieldbus eseguendo il toggle del bit CTB ed inviati al PLC a blocchi solamente quando quest'ultimo ne fa richiesta.

Al PLC viene poi segnalato tramite bit di stato (DEX) che nuovi dati sono pronti per essere prelevati. I dati vengono poi letti a blocchi dal gateway di fieldbus (toggle bit). Per poter distinguere i singoli telegrammi sul PLC, oltre ai dati, viene trasmesso al PLC nella modalità di raccolta anche il frame seriale.

La grandezza del buffer è di 1 kbyte.

Avviso!

Nella modalità di raccolta, sono richiesti i bit CTB ed SFB per il trattamento della comunicazione via buffer. I telegrammi che ugualmente possono essere completamente trasmessi in modalità di «raccolta» in un ciclo (data frame incluso), passano direttamente. Se i dati del PLC vengono messi a disposizione e trasmessi senza cambiamento di stato del bit CTB, essi andranno direttamente sull'interfaccia RS 232 con la lunghezza di telegramma impostata. Telegrammi incompleti (data frame incl.) o errati possono causare l'insorgere di messaggi di errore dell'apparecchio collegato!

È possibile una combinazione con la modalità di comando.

Lo scambio di dati a blocchi deve essere programmato sul PLC.

11.1.1 Lettura di dati slave nella modalità di «raccolta» (gateway -> PLC)

Se l'apparecchio Leuze invia dati al gateway di fieldbus, essi vengono salvati temporaneamente in un buffer. Al PLC viene segnalato tramite il bit «DEX» che i dati nella memoria sono pronti per essere prelevati. I dati non vengono trasmessi automaticamente.

Se nell'MA 2xxi non si trovano altri dati utili (bit «DEX» = «0»), come conferma di lettura occorre eseguire il toggle del bit «R-ACK» per abilitare la trasmissione dati per il ciclo di lettura successivo.

Se il buffer contiene ancora altri dati (bit «DEX» = 1), eseguendo il toggle del bit di controllo «R-ACK» vengono trasmessi i dati utili successivi rimasti nel buffer. Questo processo va ripetuto finché il bit «DEX» ritorna a «0»; ora tutti i dati sono stati prelevati dal buffer. Come conferma di lettura finale, anche qui si deve eseguire il toggle del bit «R-ACK» per abilitare la trasmissione dati per il ciclo di lettura successivo.

Bit di stato e di controllo utilizzati:

- DLC
- BLR
- DEX
- R-ACK

11.1.2 Scrittura di dati slave nella modalità di «raccolta» (PLC -> gateway)

Scrittura a blocchi

I dati inviati dal master allo slave vengono poi raccolti settando il bit «CTB» (**C**opy to **t**ransmit **b**uffer) in un «transmit buffer». Si prega di tenere presente che i dati messi a disposizione vengono trasmessi immediatamente con il toggle del bit.

Con il comando «SFB» (**S**end data from transmit **b**uffer) i dati vengono successivamente inviati dal buffer attraverso l'interfaccia seriale nell'ordine di successione ricevuto all'apparecchio Leuze collegato. Fare attenzione a non dimenticare il data frame adatto!

Poi il buffer è di nuovo vuoto e può essere scritto con nuovi dati.

Avviso!

Questa funzione offre la possibilità di memorizzare temporaneamente stringhe di dati più lunghe nel gateway, indipendentemente dal numero di byte che il fieldbus utilizzato è in grado di trasmettere in una sola volta. Con questa funzione si possono trasmettere per esempio sequenze PT o sequenze di scrittura RFID più lunghe, in quanto in questo modo gli apparecchi collegati possono ricevere i loro comandi (per esempio PT o W) in una stringa connessa. Il rispettivo frame (STX CR LF) viene richiesto per poter distinguere tra loro i singoli telegrammi.

Bit di stato e di controllo utilizzati:

- CTB
- SFB
- W-ACK

Se i dati del PLC vengono messi a disposizione e trasmessi senza cambiamento di stato del bit CTB, essi andranno direttamente sull'interfaccia RS 232 con la lunghezza di telegramma impostata. Telegrammi incompleti (data frame incl.) o errati possono causare l'insorgere di messaggi di errore dell'apparecchio collegato!

Esempio per l'attivazione di un apparecchio Leuze

Un «+» (ASCII) di attivazione viene inviato nella parte di dati (a partire dal byte 2) del telegramma al gateway.

Ciò significa che al byte di comando o di uscita 2 si deve assegnare il valore esadecimale «2B» (corrisponde al carattere «+»). Per disattivare la porta di lettura è invece necessario utilizzare il valore esadecimale «2D» (corrisponde al carattere «-» ASCII).

7	6	5	i	4	3	2	1	0			
ND	Indirizzo	4 Indiriz	zzo 3 Inc	lirizzo 2	Indirizzo 1	Indirizzo 0	Broadcast	Modalità di comando	Byte di controllo 0		
					СТВ	SFB		R-ACK	Byte di controllo 1		
					e parametri (
			Byte	dati / byt	e parametri ⁻	1			Dati		
7	6	5	4	3	2	1	0				
0	0	0	0	0	0	0	0	Byte	di uscita 0		
0	0	0	0	0	0	0	0	Byte di uscita 1			
0	0	0	0	0	0	В	2	Byte	di uscita 2		
0	0	0	0	0	0	0	0	Byte	di uscita 3		

Diagramma di flusso modalità di raccolta

Inviare lunghi comandi online al DEV, lettura della risposta dell'RS 232 dal DEV

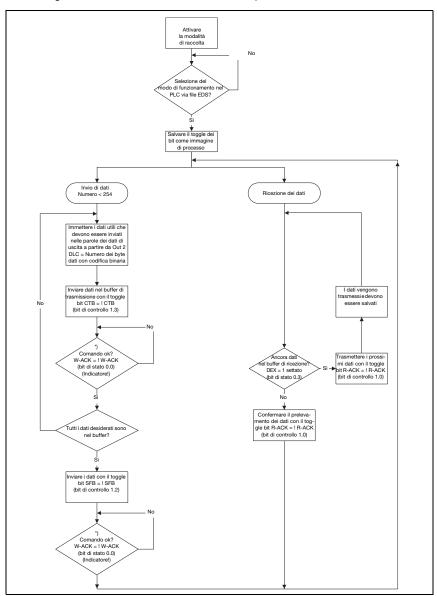


Figura 11.1: Schema della trasmissione di dati con lunghi comandi online

11.1.3 Modalità di comando

Una particolarità è rappresentata dalla cosiddetta modalità di comando, la quale viene definita mediante il byte di controllo di uscita 0 (bit 0) e permette di comandare l'apparecchio collegato via bit.

Con la modalità di comando attivata (modalità di comando = 1), il PLC non trasmette dati al terminale Leuze attraverso il gateway. I dati dall'MA al PLC vengono trasmessi nel modo operativo selezionato (trasparente/raccolta).

La modalità di comando consente di settare nel campo dati o parametri diversi bit specifici dell'apparecchio, i quali eseguono i corrispondenti comandi seriali (per esempio v, +, -, ecc.). Per richiedere per esempio la versione del terminale Leuze, si deve settare il bit corrispondente in modo che all'apparecchio Leuze venga trasmessa una «v» con il frame <STX> v <CR> <LF>.

Alla maggior parte dei comandi inviati al terminale Leuze, quest'ultimo risponde trasmettendo a sua volta dati al gateway (per esempio il contenuto del codice a barre, NoRead, versione dell'apparecchio, ecc.). La risposta viene inoltrata al PLC tramite il gateway.

Ĭ

Avviso!

I parametri disponibili per i singoli apparecchi Leuze sono elencati nel capitolo 16. La modalità di comando non può essere utilizzata con scanner manuali.

Esempio per l'attivazione di un apparecchio Leuze

Nella modalità di comando deve essere settato il byte di controllo o di uscita 0.0 per l'attivazione della modalità di comando. Poi è necessario settare solo il bit corrispondente (byte di controllo o di uscita 2.1) per l'attivazione e la disattivazione della porta di lettura.

7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	1	Byte di uscita 0
0	0	0	0	0	0	0	0	Byte di uscita 1
0	0	0	0	0	0	1	0	Byte di uscita 2
0	0	0	0	0	0	0	0	Byte di uscita 3

Diagramma di flusso modalità di comando

Byte di controllo 0, settare il bit 0.0 su 1

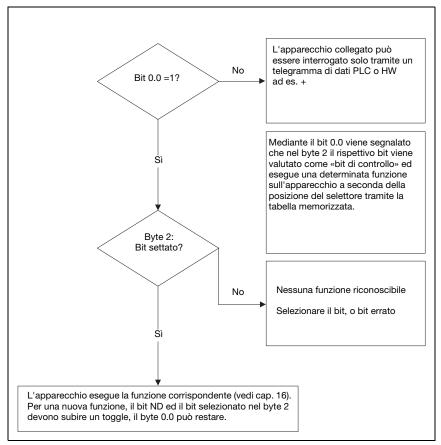
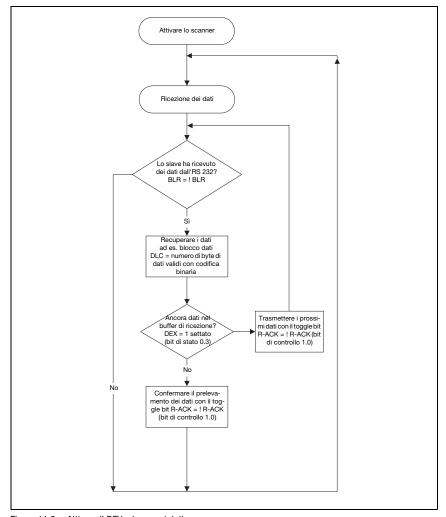



Figura 11.2: Esecuzione del comando dopo l'attivazione della modalità di comando

Trigger dell'apparecchio di identificazione e lettura dei dati

Figura 11.3: Attivare il DEV e leggere i dati

Avviso!

Per ulteriori informazioni sulla struttura del telegramma del fieldbus consultare il capitolo 10.1. Una specifica di tutti i comandi utilizzabili è contenuta nel capitolo «Specifiche per terminali Leuze» a pagina 81.

12 Messa in servizio e configurazione

12.1 Provvedimenti da adottare prima della prima messa in servizio

- Familiarizzare con il comando e la configurazione dell'MA 204i prima della prima messa in servizio.
- Prima di collegare la tensione di alimentazione ricontrollare la correttezza di tutti i collegamenti.

L'apparecchio Leuze deve essere collegato all'interfaccia apparecchio RS 232 interna.

Collegamento dell'apparecchio Leuze

- Aprire l'alloggiamento dell'MA 204i e condurre il relativo cavo dell'apparecchio (vedi capitolo 14.7.1) attraverso il foro filettato intermedio.
- Collegare il cavo all'interfaccia interna dell'apparecchio (X30, X31 o X32, vedi capitolo 7.5.1).
- ⋄ Selezionare con l'interruttore rotativo S4 (vedi capitolo 8.2.5) l'apparecchio collegato.
- Avvitare anche il passacavo PG nel foro filettato per garantire lo scarico della trazione del cavo ed il grado di protezione IP 65.

Impostazione dell'indirizzo PROFIBUS dell'apparecchio

Impostando l'indirizzo PROFIBUS viene assegnato all'MA 204i il rispettivo numero di stazione. In questo modo ad ogni nodo del bus è automaticamente noto che è uno slave nel PROFIBUS con il suo indirizzo specifico e che viene inizializzato ed interrogato dal PLC. Il PROFIBUS consente un intervallo di indirizzi da 0 a 126. Non devono essere utilizzati altri indirizzi per il traffico di dati.

Impostare l'indirizzo di stazione del gateway tramite gli interruttori rotativi S1 - S3 (unità, decine e centinaia).

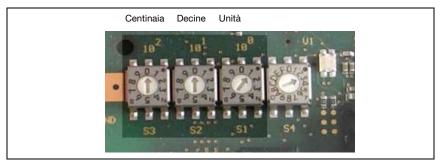


Figura 12.1: Interruttore rotativo per l'impostazione dell'indirizzo

Infine richiudere l'alloggiamento dell'MA 204i.

Attenzione!

Solo a questo punto si può applicare la tensione di alimentazione.

All'avvio dell'MA 204i, il selettore dell'apparecchio e le impostazioni dell'indirizzo vengono interrogati ed il gateway si imposta automaticamente sull'apparecchio Leuze.

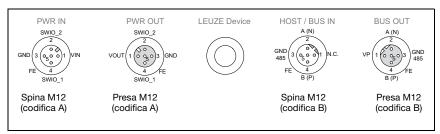


Figura 12.2: Collegamenti dell'MA 204 i visti da sotto, apparecchio su piastra di montaggio

♦ Controllare la tensione applicata, il cui valore deve essere compreso tra +18V e 30VCC.

Collegamento della messa a terra funzionale FE

Prestare attenzione al collegamento corretto alla messa a terra funzionale (FE).

Il funzionamento privo di anomalie è assicurato solo se il collegamento alla messa a terra funzionale è stato eseguito correttamente. Tutti i disturbi elettrici (accoppiamenti CEM) vengono scaricati dal collegamento della terra funzionale.

Al momento della consegna, gli SWIO 1/2 sono in parallelo su PWR IN/OUT. Questo collegamento può essere interrotto tramite un jumper.

12.2 Avvio dell'apparecchio

🔖 Applicare la tensione di alimentazione +18 ... 30 VCC (valore tipico +24 VCC), l'MA 204i si inizializza.

12.3 Fasi di progettazione per un controllore Siemens Simatic S7

Per la messa in servizio di un controllore Siemens S7 sono necessarie le seguenti fasi:

- 1. Preparazione del controllore (PLC-S7)
- 2. Installazione del file GSD
- Configurazione hardware del PLC-S7 3.
- 4. Configurazione dei moduli
- 5. Trasmissione della progettazione PROFIBUS al controller (PLC-S7)

12.3.1 Fase 1 – Preparazione del controllore (PLC-S7)

Nella prima fase, il controllore viene preparato alla trasmissione di dati consistente.

Nella programmazione il controllore deve essere preparato alla trasmissione di dati consistente. Ciò è diverso da controllore a controllore. Per il controllore Siemens vengono offerte le sequenti possibilità.

S7

Devono essere integrati nel programma gli speciali elementi funzionali SFC 14 per i dati di ingresso e SFC 15 per i dati di uscita. Questi elementi sono componenti standard ed hanno il compito di consentire la trasmissione di dati consistente.

Avviso!

Per un controllore S7 è necessario utilizzare almeno il Simatic Manager di versione 5.4 + Service Pack 5 (V5.4+SP5).

12.3.2 Fase 2 - Installazione del file GSD

Per la progettazione a posteriori degli apparecchi PROFIBUS, ad esempio dell'MA 204i, è necessario caricare il file GSD corrispondente.

Informazioni generali sul file GSD

Il termine GSD indica la descrizione testuale di un modello di apparecchio PROFIBUS. Il file GSD può supportare un numero qualsiasi di lingue in un file. Ogni file GSD contiene una versione del modello di apparecchio MA 204i. Ciò si riflette anche nel nome del file.

È possibile trovare il file GSD all'indirizzo www.leuze.com.

Questo file contiene tutti i dati in moduli necessari per il funzionamento dell'MA 204*i*. Si tratta di dati di ingresso e di uscita e di parametri per il funzionamento dell'MA 204*i* e della definizione dei bit di controllo e di stato.

Se, ad esempio, nel tool di progettazione, si modificano parametri, le modifiche vengono salvate dal PLC nel progetto e non nel file GSD. Il file GSD è una parte certificata dell'apparecchio e non deve essere modificato manualmente. Il file non viene modificato nemmeno dal sistema.

La funzionalità dell'MA 204i è definita da record di parametri. I parametri e le loro funzioni sono strutturati nel file GSD tramite moduli. Con uno strumento specifico di progettazione dell'applicazione, in fase di creazione del programma PLC, i moduli necessari vengono integrati e parametrizzati in funzione dell'applicazione. Nel funzionamento dell'MA 204i sul PROFIBUS DP, sono assegnati a tutti i parametri dei valori predefiniti. Se questi parametri non vengono modificati dall'utente, l'apparecchio opera con le impostazioni di default della Leuze electronic.

Le impostazioni standard dell'MA 204i sono riportate nelle seguenti descrizioni dei moduli.

12.3.3 Fase 3 – Configurazione hardware del PLC-S7: progettazione

Nella progettazione del sistema PROFIBUS mediante HW Config del SIMATIC Manager si inserisce ora l'MA 204i nel progetto e si assegna un indirizzo univoco (0 ... 125).

ĭ

Avviso!

Attenzione: questo indirizzo e quello configurato nell'apparecchio devono essere uguali.

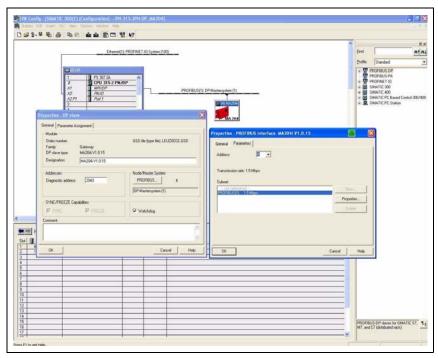


Figura 12.1: Assegnazione dell'indirizzo dell'apparecchio

12.3.4 Fase 4 – Configurazione dei moduli

♦ Selezionare un solo modulo dati corrispondente per l'intervallo di ingresso e di uscita.
Sono disponibili diversi moduli combinabili tra loro in diverse lunghezze di dati (4, 8, 12, 16, 20, 32 ... 128 byte). In tutto, sono possibili massimo 244 byte per i byte di ingresso e uscita rispettivamente.

Avviso!

Poiché il modulo dati contiene 2 byte rispettivamente per i byte di controllo ed i byte di stato, la mera lunghezza dei dati utili è sempre minore di 2 byte rispetto al modulo dati selezionato. Se si utilizza per esempio il modulo dati con 12 byte, detratti i 2 byte di stato e di controllo, l'apparecchio Leuze avrà a disposizione 10 byte effettivi per i dati utili.

Suggerimento

Per il modulo di uscita è sufficiente, nella maggior parte dei casi, il modulo a 4 byte. Un modulo maggiore è ad esempio necessario per parametrizzare uno scanner di codici a barre BCL tramite sequenze PT o per scrivere in un transponder RFID. In questi casi è quasi sempre opportuno utilizzare moduli dati maggiori.

Esempi di impostazioni opportune per i rispettivi apparecchi Leuze

BPS 8 e BPS 300i

Modulo di ingresso: 8 byteModulo di uscita: 4 byte

Scanner manuale

- Modulo di ingresso: individuale
 La grandezza del modulo di ingresso è in funzione del numero di cifre del codice a barre da leggere o del codice 2 D. Per esempio, per un codice a barre di 12 cifre (+ 2 byte di stato) è sensato il modulo di ingresso con 16 byte.
- Modulo di uscita: nessuno
 Poiché normalmente non vengono inviati dati allo scanner manuale, non è necessario
 alcun modulo di uscita.

Scanner di codici a barre BCL, apparecchi RFID (RFM, RFI e RFU), LSIS 222 e DCR 202i

- Modulo di ingresso: individuale
 La grandezza del modulo di ingresso è in funzione del numero di cifre del codice a barre da leggere, codice RFID o del codice 2 D. Per esempio, per un codice a barre di 18 cifre (+ 2 byte di stato) è sensato il modulo di ingresso con 20 byte.
- Modulo di uscita: 4 byte

12.3.5 Fase 5 – Trasmissione della progettazione al controller (PLC-S7)

Dopo la trasmissione corretta al controller (PLC-S7), il PLC esegue automaticamente le sequenti attività:

- · Controllo dei nomi degli apparecchi
- Attivazione della connessione tra controller ed apparecchi PROFIBUS progettati
- Scambio di dati ciclico

12.4 Messa in servizio tramite PROFIBUS DP

12.5 Informazioni generali sull'implementazione PROFIBUS dell'MA 204i

12.5.1 Profilo di comunicazione

Il **Profilo di comunicazione** definisce il modo in cui i nodi trasmettono i loro dati nel canale di trasmissione. L'MA 204*i* supporta il profilo di comunicazione per sistemi di automazione e la **Pe**riferica **d**ecentralizzata -> **PROFIBUS DP**.

Profilo di comunicazione DP

Il profilo di comunicazione **PROFIBUS DP** è progettato per l'efficiente scambio di dati a livello di campo. Lo scambio dei dati con gli apparecchi decentrali avviene prevalentemente in maniera ciclica. Le funzioni di comunicazione necessarie sono definite nella funzione di base **DP**. **DP** offre anche servizi di comunicazione aciclici che servono a parametrizzare, comandare, osservare e gestire allarmi.

Per poter eseguire lo scambio di dati sono definiti servizi che **PROFIBUS DP** distingue sulla base dei punti di accesso dati trasmessi nell'header del telegramma.

Il profilo MA 204i è conforme al profilo PROFIBUS per sistemi di identificazione.

12.5.2 Protocollo di accesso al bus

I profili di comunicazione PROFIBUS (DP, FMS) utilizzano un metodo di accesso al bus unitario. Viene realizzato dal layer 2 del modello OSI. Il controllo di accesso al bus (MAC) definisce il metodo con cui si stabilisce l'istante in cui un nodo può trasmettere dati e deve assicurare che ad un determinato istante solo un nodo possieda l'autorizzazione a trasmettere. Il metodo di accesso al PROFIBUS include la procedura Token Passing e la procedura Master-Slave.

Metodo	Descrizione	MA 204 <i>i</i>
Procedura Token Passing	In questa procedura il diritto di accesso al bus viene distribuito da un token, con il quale il nodo riceve l'autorizzazione a trasmettere. Il token si sposta in un intervallo di tempo definito tra i master dell'anello. Questo tipo di accesso al bus viene utilizzato per la comunicazione tra i master.	
Procedura Master-Slave	Ad un master sono associati diversi slave. Il master può accedere agli slave associati e prelevare messaggi da essi. L'iniziativa parte sempre dal master.	Sì

Tabella 12.1: Metodo di accesso al PROFIBUS

Le due procedure possono essere anche mescolate per realizzare un sistema multimaster. L'MA 204*i* funziona sia in un sistema monomaster che in un sistema multimaster.

Avviso!

Nel 2007 al PROFIBUS DP è stata aggiunta la specifica DPV2. La quale consente anche una comunicazione SLAVE-SLAVE. L'MA 204i non supporta questo tipo di comunicazione.

12.5.3 Tipi di apparecchi

Per il PROFIBUS DP ci sono due tipi di master ed un tipo di slave:

Tipo di apparecchio	Descrizione	MA 204 <i>i</i>
Master di classe 1 (DPM1)	I master di classe 1 sono definiti per il traffico di dati utili (per esempio PLC, PC).	
Master di classe 2 (DPM2)	I master di classe 2 sono definiti per fini di messa in servizio. Servizi supplementari consentono una comoda configurazione e diagnostica dell'apparecchio.	
Slave	Lo slave è una periferica che mette a disposizione dati di ingresso per il controllore e riceve dati di uscita dal controllore.	Х

Tabella 12.2: Tipi di master e slave PROFIBUS DP

Avviso!

Nel file originario dell'apparecchio (file GSD) dell'MA 204i, l'apparecchio è definito come slave!

Tutti i servizi ampliati **non** vengono realizzati per il MA 204i profilo PROFIBUS.

12.5.4 Riconoscimento automatico della velocità di trasmissione

L'implementazione PROFIBUS dell'MA 204i dispone di un riconoscimento automatico della velocità di trasmissione. L'MA 204i sfrutta questa funzione e non offre alcuna possibilità per un'impostazione manuale o fissa. Vengono supportate le seguenti velocità di trasmissione:

Velocità di	9,6	19,2	45,45	93,75	187,5	500	1500	3000	6000	12000
trasmissione										
kBit/s										

Il riconoscimento automatico della velocità di trasmissione è reso noto nel file GSD dell'MA 204*i*: Auto_Baud_supp = 1

12.5.5 Strutturazione modulare dei parametri

La funzionalità PROFIBUS DP dell'apparecchio viene definita mediante i record di parametri raggruppati in moduli. I moduli sono contenuti in un file GSD facente parte e fornito insieme all'apparecchio. Con uno strumento specifico di progettazione dell'applicazione, come ad esempio il Simatic Manager per PLC Siemens, durante la messa in servizio vengono integrati i moduli necessari in un progetto e configurati o parametrizzati in modo corrispondente. Questi moduli vengono preparati dal file GSD.

Avviso!

Tutti i moduli di ingresso e di uscita presenti in questo manuale sono descritti dal punto di vista del controllore (controller):

- I dati di ingresso arrivano al controllore
- I dati di uscita vengono emessi dal controllore.

Per ulteriori informazioni sulla preparazione del controllore e del file GSD si veda il capitolo «Fasi di progettazione per un controllore Siemens Simatic S7» a pagina 60.

Le impostazioni standard dell'MA 204i sono riportate nelle seguenti descrizioni dei moduli.

Avviso!

Si osservi che il PLC sovrascrive i dati impostati! A volte i controllori logici programmabili forniscono un cosiddetto «modulo universale». Questo modulo non deve essere attivato per l'MA 204i!

Dal punto di vista dell'apparecchio viene fatta distinzione tra parametri PROFIBUS e parametri interni. Per parametri PROFIBUS si intendono tutti i parametri che possono essere modificati tramite il PROFIBUS e che vengono sovrascritti nei moduli successivi. Per contro, i parametri interni possono essere modificati solo attraverso un'interfaccia di manutenzione e mantengono il loro valore anche dopo una parametrizzazione PROFIBUS.

Durante la fase di parametrizzazione, l'MA 204*i* riceve telegrammi di parametrizzazione dal controller (master). Prima che questo possa essere elaborato e possano essere impostati i rispettivi valori parametrici, tutti i parametri PROFIBUS vengono resettati ai valori di default.

In questo modo viene assicurato che i parametri contengano valori standard da moduli non selezionati.

12.5.6 Parametri a definizione fissa/parametri dell'apparecchio

Per il PROFIBUS i parametri possono essere presenti in moduli ed anche definiti in maniera fissa in un nodo PROFIBUS.

A seconda del tool di progettazione, i parametri fissi si chiamano parametri «Common» o anche parametri specifici dell'apparecchio.

Questi parametri devono essere sempre presenti. Vengono definiti all'esterno di moduli di progettazione e sono ancorati nell'header del telegramma.

Nel Simatic Manager i parametri fissi vengono impostati tramite le proprietà dell'oggetto. I parametri dei moduli vengono parametrizzati tramite l'elenco dei moduli dell'apparecchio selezionato. Richiamando le proprietà di progetto di un modulo si possono eventualmente impostare i parametri corrispondenti.

Segue l'elenco dei parametri dell'apparecchio fissi ma impostabili nell'MA 204*i* (DAP Slot 0/Subslot 0), sempre presenti e disponibili indipendentemente dai moduli.

Parametro	Descrizione	Ind.	Tipo di dati	Campo di valori	Valore pred.	Unità
Modo operativo		0:0	Bit	0: modalità trasparente 1: modalità di raccolta	0	-
Velocità di trasmissione		0.1	Bit	Valore predefinito, 9600,	Valore pred.	
Data Bits		0.2	Bit	7, 8, 9	8	
Parity		0.3	Bit	Yes, None	None	
Stop Bit		0.4	Bit	0,1	1	
Use Separator		0.5	Bit	Yes, No	No	
Use Status and Control Bits		0.6	Bit	Yes, No	No	

Tabella 12.3: Parametri dell'apparecchio

Lunghezza del parametro: 33 byte

Dati di ingresso

Nessuno

Dati di uscita

Nessuno

12.5.7 Panoramica dei moduli di progettazione

Utilizzando moduli PROFIBUS, i parametri vengono formati dinamicamente, cioè vengono modificati solo i parametri selezionati mediante i moduli attivati.

Per l'MA 204i ci sono parametri (parametri dell'apparecchio) che devono essere sempre presenti. Questi parametri vengono definiti all'esterno dei moduli, per cui sono sempre connessi al modulo di base (DAP).

La presente versione offre vari moduli. Un **modulo di apparecchio (DAP**, vedi Parametri a definizione fissa/parametri dell'apparecchio) serve alla parametrizzazione di base dell'MA 204*i* ed è integrato permanentemente nel progetto. Altri moduli possono essere ripresi nel progetto a seconda delle necessità o dell'applicazione.

Esistono diversi tipi di moduli:

- Modulo dei parametri per la parametrizzazione dell'MA 204i.
- Moduli di stato o di controllo per influenzare i dati di ingresso/uscita.
- Moduli che possono contenere sia parametri sia informazioni di controllo o di stato.

Un modulo PROFIBUS definisce l'esistenza ed il significato dei dati di ingresso e di uscita. Definisce inoltre i parametri necessari. La disposizione dei dati all'interno di un modulo è prestabilita.

Tramite l'elenco dei moduli è definita la composizione dei dati di ingresso/uscita.

L'MA 204i interpreta i dati di uscita ricevuti ed attiva le reazioni corrispondenti nell'MA 204i. L'interprete per l'elaborazione dei dati viene adattato alla struttura del modulo durante l'inizializzazione.

Ciò vale anche per i dati di ingresso. Sulla base dell'elenco dei moduli e delle proprietà definite del modulo, la stringa di dati di ingresso viene formattata e riferenziata ai dati interni.

Nel funzionamento ciclico i dati di ingresso vengono poi trasferiti al controller.

I dati di ingresso vengono inizializzati dall'MA 204i su un valore iniziale (normalmente su 0) durante la fase di startup o di inizializzazione.

\bigcirc

Avviso!

I moduli possono essere disposti in qualsiasi sequenza nell'engineering tool. Si prega tuttavia di osservare che molti moduli MA 204i contengono dati interconnessi. La **consistenza di questi dati** deve essere assolutamente garantita.

L'MA 204i offre moduli diversi. Ognuno di questi moduli può essere selezionato una sola volta, altrimenti l'MA 204i ignora la configurazione.

L'MA 204i controlla il numero massimo di moduli a lei consentito. Il controllore segnala inoltre un errore se i dati di ingresso e di uscita superano la lunghezza totale di max. 488 byte per tutti i moduli selezionati. Possono essere utilizzati massimo 244 byte per i dati di ingresso e di uscita rispettivamente.

I limiti specifici dei singoli moduli dell'MA 204i vengono resi noti nel file GSD.

La seguente panoramica dei moduli indica la caratterizzazione dei singoli moduli:

Modulo	Descrizione	Dati di ingresso	Dati di uscita
4 byte di ingresso	Contenuto dei dati con max. 2 byte	4	
8 byte di ingresso	Contenuto dei dati con max. 6 byte	8	
12 byte di ingresso	Contenuto dei dati con max. 10 byte	12	
16 byte di ingresso	Contenuto dei dati con max. 14 byte	16	
20 byte di ingresso	Contenuto dei dati con max. 18 byte	20	
32 byte di ingresso	Contenuto dei dati con max. 30 byte	32	
64 byte di ingresso	Contenuto dei dati con max. 62 byte	64	
128 byte di ingresso	Contenuto dei dati con max. 126 byte	128	
4 byte di uscita	Contenuto dei dati con max. 2 byte		4
8 byte di uscita	Contenuto dei dati con max. 6 byte		8
12 byte di uscita	Contenuto dei dati con max. 10 byte		12
16 byte di uscita	Contenuto dei dati con max. 14 byte		16
20 byte di uscita	Contenuto dei dati con max. 18 byte		20
32 byte di uscita	Contenuto dei dati con max. 30 byte		32
64 byte di uscita	Contenuto dei dati con max. 62 byte		64
128 byte di uscita	Contenuto dei dati con max. 126 byte		128

Tabella 12.4: Panoramica dei moduli

12.5.8 Preparazione del controllore alla trasmissione di dati consistente

Nella programmazione il controllore deve essere preparato alla trasmissione di dati consistente. Ciò è diverso da controllore a controllore. Per il controllore Siemens vengono offerte le seguenti possibilità.

S7

Devono essere integrati nel programma gli speciali elementi funzionali SFC 14 per i dati di ingresso e SFC 15 per i dati di uscita. Questi elementi sono componenti standard ed hanno il compito di consentire la trasmissione di dati consistente.

O Avviso!

Per un controllore S7 è necessario utilizzare almeno il Simatic Manager di versione 5.4 + Service Pack 5 (V5.4+SP5).

12.6 Configurazione variabile della larghezza dati di comunicazione

La comunicazione dell'MA 204i con il sistema fieldbus è configurabile con una ampiezza dei dati variabile, il limite superiore viene definito dal fieldbus. Per il PROFIBUS DP, sono a disposizione le seguenti grandezze per il data frame:

Le lunghezze dati minori (< 28 byte) sono interessanti particolarmente per l'impiego di scanner di codici a barre (BCL). Le lunghezze dati maggiori sono invece più rilevanti per scanner d codici 2D (scanner manuale, LSIS) e RFID.

Tenendo in considerazione l'ampiezza dei dati massima ammissibile di 244 byte, è possibile utilizzare per i dati di ingresso anche più moduli combinabili tra loro. Dalla combinazione del modulo 128 e del modulo 64 risulta ad es. una lunghezza di dati di ingresso di 192 byte.

12.7 Impostazione dei parametri di lettura sull'apparecchio Leuze

Messa in servizio dell'apparecchio Leuze

Per la messa in servizio di una stazione di lettura occorre preparare l'apparecchio Leuze sull'MA 204i al suo compito di lettura. La comunicazione con l'apparecchio Leuze avviene tramite l'interfaccia di assistenza.

Avviso!

Ulteriori informazioni sul collegamento e l'utilizzo dell'interfaccia di assistenza.

A tal fine collegare l'apparecchio Leuze all'MA 204i.

A seconda dell'apparecchio Leuze, ciò avviene con un cavo di interconnessione (codice articolo KB 031-1000) o direttamente sull'MA 204*i*. Con coperchio aperto, la spina di assistenza ed i relativi interruttori sono accessibili.

Selezionare la posizione dell'interruttore di assistenza «DEV».

Collegare l'interfaccia di assistenza, richiamare il programma terminale

- Collegare il PC tramite cavo RS 232 alla spina di assistenza.
- Sul PC richiamare un programma terminale (ad esempio BCL-Config) e controllare se l'interfaccia (COM 1 o COM 2) a cui è stata collegata l'MA 204i presenta la seguente impostazione Leuze standard: 9600 baud, 8 bit di dati, nessuna parità, 1 bit di stop e STX, dati, CR, LF.

Il tool di configurazione per BCL, RFID, ecc. può essere scaricato da **www.leuze.com**. Per comunicare con l'apparecchio Leuze collegato, sul programma terminale del PC occorre impostare il framing **STX**, **dati**, **CR**, **LF**, in quanto l'apparecchio Leuze è preconfigurato su questo carattere frame.

STX (02h): Prefisso 1
CR (0Dh): Suffisso 1
LF (0Ah): Suffisso 2

Funzionamento

Posizionare l'MA 204i su «RUN» (funzionamento).

Ora l'apparecchio Leuze è collegato al fieldbus. L'attivazione dell'apparecchio Leuze può ora avvenire mediante l'ingresso di commutazione sull'MA 204*i*, mediante la parola dati di processo Out-Bit 1 (bit 0.2) o mediante la trasmissione di un comando «+» all'apparecchio Leuze (vedi capitolo 16 «Specifiche per terminali Leuze»). Per ulteriori informazioni sul protocollo di trasmissione fieldbus, vedi capitolo 10 «Telegramma».

Lettura delle informazioni in modalità di assistenza

Posizionare l'interruttore di assistenza del gateway su «MA» (gateway).

🔖 Inviare un comando «v» per richiamare informazioni generali di assistenza dell'MA 204i.

Al capitolo «Lettura delle informazioni in modalità di assistenza» a pagina 41 è disponibile una panoramica dei comandi e delle informazioni a disposizione.

12.7.1 Particolarità nell'utilizzo di scanner manuali (apparecchi per codici a barre e 2D, apparecchi combinati con RFID)

Avviso!

È possibile trovare una descrizione della parametrizzazione dell'apparecchio e i codici necessari nella rispettiva documentazione all'indirizzo **www.leuze.com.**

12.7.1.1 Scanner manuali a cavo sull'MA 204i

Gli scanner manuali e gli apparecchi combinati mobili disponibili nella gamma di prodotti della Leuze electronic possono tutti essere utilizzati con il rispettivo cavo di interconnessione.

Nell'utilizzo dell'MA 204i, l'alimentazione elettrica dello scanner manuale (5V/con 1A) può ssere collegata con l'interfaccia mediante un cavo tramite il connettore Sub-D a 9 poli (tensione su pin 9). Il rispettivo cavo deve essere adeguato allo scanner manuale e deve essere ordinato separatamente. A questo cavo viene connesso un cavo Sub-D a 9 poli (KB JST-HS-300, codice articolo 50113397) che viene collegato all'MA 204i. Anche questo cavo deve essere ordinato separatamente.

Il triggering avviene in questo esempio con il tasto di trigger sullo scanner manuale.

12.7.1.2 Scanner manuale senza cavo sull'MA 204i

Gli scanner manuali senza cavo e gli apparecchi combinati mobili disponibili nella gamma di prodotti della Leuze electronic possono tutti essere utilizzati tramite la docking station con il rispettivo cavo di interconnessione.

Per la stazione di ricarica occorre di solito un collegamento 230 VAC (presa). Qui viene realizzato un collegamento dati della stazione di ricarica con l'MA 204*i*. Il rispettivo cavo deve essere adeguato allo scanner manuale e deve essere ordinato separatamente. A questo cavo viene connesso un cavo Sub-D a 9 poli (KB JST-HS-300, codice articolo 50113397) che viene collegato all'MA 204*i*. Anche questo cavo deve essere ordinato separatamente.

Il triggering avviene in questo esempio con il tasto di trigger sullo scanner manuale.

Anche per questi apparecchi sono necessari i seguenti codici per la loro parametrizzazione.

12.7.2 Particolarità nell'utilizzo di un RFM/RFI

In caso di utilizzo dell'MA 204i in combinazione con un apparecchio RFID, si consiglia un'ampiezza dei dati di min. 24 byte per poter trasmettere le informazioni dall'/all'apparecchio di lettura in un telegramma.

Segue un esempio di telegramma per un comando di scrittura in combinazione con un apparecchio RFID.

Avviso!

Occorre tenere presente anche che tutti i caratteri inviati ad un transponder sono caratteri ASCII con codifica esadecimale. Questi caratteri (esadecimali) vanno trattati a loro volta come singoli caratteri ASCII e convertiti nella rappresentazione esadecimale per la trasmissione tramite il fieldbus.

Esempio:

7	6	5	4	3	2	1	0	_
00	00	00	00	00	00	00	00	Byte di controllo 0
00	00	00	00	00	00	00	00	Byte di controllo 1
	•	•	•				•	_
34	35	31	31	30	35	30	57	Dati
00	00	34	37	33	37	35	36	Dali

HEX	57	30	35	30	31	31	35	34	36	35	37	33	37	34
CHAR	W	0	5	0	1	1	5	4	6	5	7	3	7	4
Testo in chiaro		•	•		•	•	1	Γ	(Э		S		t

13 Diagnostica ed eliminazione degli errori

Se nella messa in servizio dell'MA 204i si verificano problemi, consultare la seguente tabella, che descrive errori tipici, le loro possibili cause e suggerimenti per la loro eliminazione.

13.1 Cause generali degli errori

Errore	Possibile causa d'errore	Provvedimenti		
Perdita di dati	Telegramma di dati più lungo del tele-	Incremento della lunghezza del tele-		
(bit DL)	gramma bus in un ciclo di bus/capacità di	gramma bus.		
,	memoria.	Eseguire prima un toggle dei dati.		
Dati sull'RS 232	Seguenza errata.	Correggere la sequenza:		
invece che nel buffer	Sequenza errata.	Preparare i dati, eseguire il toggle di CTB.		
LED di stato PWR sul	la echada			
LLD ui stato F Wh sui	Tensione di alimentazione non collegata			
Off	all'apparecchio.	Controllare la tensione di alimentazione.		
	Errore hardware.	Inviare l'apparecchio al centro di assi-		
		stenza.		
Verde/arancione,	Apparecchio in modalità di inizializzazione.	Nessun firmware valido, inviare l'apparec-		
lampeggiante		chio al servizio di assistenza clienti.		
	Errore dell'apparecchio.	Inviare l'apparecchio al centro di assi-		
mente acceso	Aggiornamento del firmware non riuscito.	stenza.		
LED COM sull'alloggia	amento (vedi figura 8.1 a pagina 34)			
	Errore di comunicazione sul PROFIBUS:	Controllare l'interfaccia.		
Rosso, costante-	nessuna attivazione della comunicazione	Non può essere eliminato tramite reset.		
mente acceso		Inviare l'apparecchio al centro di assi-		
	verso il Controller («no data exchange»).	stenza.		
LED PWR sull'alloggia	amento (vedi figura 8.1 a pagina 34)			
	Tensione di alimentazione non collegata	Controllare la tensione di alimentazione.		
0#	all'apparecchio.			
Off	L'apparecchio non è stato ancora ricono-	Inviare l'apparecchio al centro di assi-		
	sciuto dal PROFIBUS.	stenza.		
Rosso, costante-		Inviare l'apparecchio al centro di assi-		
mente acceso Errore dell'apparecchio.		stenza.		
Verde, lampeggiante	SERVICE attivo.	Interruttore di assistenza su «RUN».		
	Velocità di trasmissione errata/indirizzo	Controllare le impostazioni dell'interrut-		
Rosso, lampeggiante	errato:	tore:		
	Indirizzo >126: nessuna comunicazione	Interruttori di indirizzamento S1, S2,		
Rosso, costante-	Freezo dell'apparagable	Inviare l'apparecchio al centro di assi-		
mente acceso	Errore dell'apparecchio.	stenza.		

Tabella 13.1: Cause generali degli errori

13.2 Errori interfaccia

Errore	Possibile causa d'errore	Provvedimenti
Nessuna	Cablaggio non corretto.	Controllare il cablaggio.
comunicazione	Impostazioni diverse del protocollo.	Controllare le impostazioni del protocollo.
attraverso PROFIBUS LED COM rosso,	Indirizzo PROFIBUS impostato scorrettamente.	Controllare l'indirizzo PROFIBUS.
costantemente acceso	Progettazione errata.	Controllare la progettazione dell'apparecchio nel
costantemente acceso	Trogettazione errata.	tool di progettazione.
		Controllare il cablaggio.
	Cablaggio non corretto.	Controllare in particolare la schermatura del
	Cabiaggio non corretto.	cablaggio.
		Controllare il cavo utilizzato.
		Controllare la schermatura (schermatura com-
Errori sporadici sul		pleta fino al morsetto).
PROFIBUS		Controllare la messa a terra ed il collegamento
FNOI IDOS	Disturbi elettromagnetici.	alla terra funzionale.
		Evitare l'induzione elettromagnetica non
		posando la linea parallelamente ai cavi che con-
		ducono forti intensità di corrente.
	Estensione massima della rete	Controllare l'estensione massima della rete in
	superata.	funzione delle lunghezze massime dei cavi.

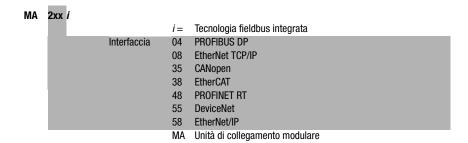
Figura 13.1: Errore di interfaccia

Avviso!

In caso di richiesta di assistenza, fare una copia del capitolo 13.

Nella colonna «Provvedimenti», fare una crocetta sui punti già controllati, compilare il seguente campo dell'indirizzo ed inviare le pagine per fax al numero sotto indicato insieme all'ordine di assistenza.

Dati del cliente (da compilare)


Tipo di apparecchio:	
Ditta:	
Persona da contattare / reparto:	
Telefono (chiamata diretta):	
Fax:	
Via / n°:	
CAP / località:	
Paese:	

Numero di fax assistenza Leuze:

+49 7021 573 - 199

14 Elenco dei tipi e degli accessori

14.1 Codice di identificazione

14.2 Elenco dei tipi

Codice di designazione	Descrizione	Descrizione
MA 204 <i>i</i>	Gateway PROFIBUS	50112893
MA 208 <i>i</i>	Gateway EtherNet TCP/IP	50112892
MA 235 <i>i</i>	CANopen	50114154
MA 238 <i>i</i>	EtherCAT	50114155
MA 248 <i>i</i>	Gateway PROFINET IO RT	50112891
MA 255 <i>i</i>	DeviceNet	50114156
MA 258 <i>i</i>	EtherNet/IP	50114157

Tabella 14.1: Elenco dei tipi MA 2xxi

14.3 Accessorio: resistenza terminale

Codice di designazione	Descrizione	Codice articolo
TS 02-4-SA M12	Connettore a spina M12 con resistenza terminale integrata per BUS OUT	50038539

Tabella 14.2: Resistenza terminale per l'MA 204*i*

14.4 Accessori: connettori

Codice di designazione	Descrizione	Descrizione
KD 02-5-BA	Presa M12 per HOST o BUS IN	50038538
KD 02-5-SA	Spina M12 per BUS OUT	50038537
KDS BUS OUT M12-T-5P	Connettore a T M12 per BUS OUT	50109834
KD 095-5A	Presa M12 per alimentazione elettrica	50020501
KS 095-4A	Spina M12 per SW IN/OUT	50040155

Tabella 14.3: Connettori per l'MA 204i

14.5 Accessori: cavi preassemblati per l'alimentazione elettrica

14.5.1 Occupazione dei contatti del cavo di collegamento PWR

PWR IN (presa a 5 poli, codifica A)					
PWR IN	Pin	Nome	Colore del conduttore		
SWIO_2	1	VIN	Marrone		
2	2	SWI0_2	Bianco		
$VIN\left(1\begin{pmatrix} \circ & \circ \\ \circ & \circ_5 & \circ \end{pmatrix} \right)$ GND	3	GND	Blu		
5500	4	SWI0_1	Nero		
4 FE SWIO 1	5	FE	Grigio		
Presa M12 (codifica A)	Filettatura	FE	Nudo		

PWR OUT (connettore a spina a 5 poli, codifica A)						
PWR OUT	Pin	Nome	Colore del conduttore			
SWIO_2	1	VOUT	Marrone			
2	2	SWI0_2	Bianco			
$GND \begin{pmatrix} 3 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix} \downarrow VOUT$	3	GND	Blu			
$\begin{array}{c c} \text{GND} & 3 & 0 & 0 & 1 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	4	SWI0_1	Nero			
FE 4 SWIO 1	5	FE	Grigio			
Spina M12 (codifica A)	Filettatura	FE	Nudo			

14.5.2 Dati tecnici dei cavi per l'alimentazione elettrica

Campo della temperatura di esercizio A riposo: -30°C ... +70°C In movimento: 5°C ... +70°C

Materiale Guaina: PVC Raggio di curvatura > 50mm

14.5.3 Designazioni per l'ordinazione dei cavi di alimentazione elettrica

Codice di designazione	Descrizione	Codice articolo
K-D M12A-5P-5m-PVC	Presa M12 per PWR, uscita assiale, estremità aperta, lunghezza del cavo 5 m	50104557
K-D M12A-5P-10m-PVC	Presa M12 per PWR, uscita assiale, estremità aperta, lunghezza del cavo 10 m	50104559

Tabella 14.4: Cavi PWR per l'MA 204i

14.6 Accessori: cavi preassemblati per il collegamento del bus

14.6.1 Informazioni generali

- Cavo KB PB ... per il collegamento al connettore M12 BUS IN/BUS OUT
- Cavo standard disponibile da 2m a 30m
- · Cavi speciali su richiesta

14.6.2 Occupazione dei contatti del cavo di collegamento M12 PROFIBUS KB PB...

Cavo di collegamento PROFIBUS (presa/spina a 5 poli, codifica B)					
A (N)	Pin	Nome	Colore del conduttore		
2	1	N.C./VCC	-		
N.C. $\left(1\left(0, 0_{5}\right)^{3}\right)$ N.C.	2	A (N)	Verde		
4 N.C.	3	N.C./ GND 485	-		
B (P) Presa M12	4	B (P)	Rosso		
(codifica B)	5	N.C.	-		
N.C. 3 0 0 1 N.C. N.C. 4 B (P) Connettore a spina M12 (codifica B)	Filettatura	FE	Nudo		

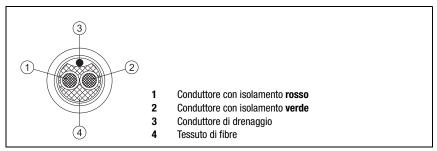


Figura 14.1: Struttura del cavo di collegamento PROFIBUS

14.6.3 Dati tecnici del cavo di collegamento M12 PROFIBUS KB PB...

Campo della temperatura di esercizio A riposo: -40°C ... +80°C

In movimento: -5°C ... +80°C

Materiale I cavi soddisfano le norme di PROFIBUS,

senza alogeni, silicone e PVC

Raggio di curvatura > 80 mm, adatto per cavi di trascinamento

14.6.4 Sigle per l'ordinazione del cavo di collegamento M12 PROFIBUS KB PB...

Codice di designazione	Descrizione	Codice articolo	
Presa M12 per BUS IN, uscita cavo assiale, estremità aperta			
KB PB-2000-BA	Lunghezza del cavo 2m	50104181	
KB PB-5000-BA	Lunghezza del cavo 5 m	50104180	
KB PB-10000-BA	Lunghezza del cavo 10 m	50104179	
KB PB-30000-BA	Lunghezza del cavo 30 m	50104175	
Spina M12 per BUS OUT	, uscita cavo assiale, estremità aperta		
KB PB-2000-SA	Lunghezza del cavo 2m	50104188	
KB PB-5000-SA	Lunghezza del cavo 5m	50104187	
KB PB-10000-SA	Lunghezza del cavo 10 m	50104186	
KB PB-30000-SA	Lunghezza del cavo 30 m	50104182	
Spina M12 + presa M12	per PROFIBUS/multiNet plus, uscite del cavo assiali		
KB PB-1000-SBA	Lunghezza del cavo 1 m	50104096	
KB PB-2000-SBA	Lunghezza del cavo 2m	50104097	
KB PB-5000-SBA	Lunghezza del cavo 5 m	50104098	
KB PB-10000-SBA	Lunghezza del cavo 10 m	50104099	
KB PB-30000-SBA	Lunghezza del cavo 30 m	50104173	

Tabella 14.5: Cavo di collegamento al bus per l'MA 204i

14.7 Accessori: cavi preassemblati per il collegamento degli apparecchi di identificazione Leuze

14.7.1 Sigle per l'ordinazione dei cavi di collegamento apparecchi

Codice di designazione	Descrizione	Codice articolo
KB JST-3000	MA 31, BCL 90, IMRFU-1(RFU), lunghezza del cavo 3 m	50115044
KB JST-HS-300	Scanner manuale, lunghezza del cavo 0,3 m	50113397
KB JST-M12A-5P-3000	BPS 8, BCL 8, lunghezza del cavo 3m	50113467
KB JST-M12A-8P-Y-3000	LSIS 4x2i, lunghezza del cavo 3m	50113468
KB JST-M12A-8P-3000	LSIS 122/LSIS 222, lunghezza del cavo 3 m	50111225
K-D M12A-5P-5m-PVC	Alimentazione elettrica, lunghezza del cavo 5 m	50104557
K-D M12A-5P-10m-PVC	Alimentazione elettrica, lunghezza del cavo 10 m	50104559
K-DS M12A-MA-5P-3m-S-PUR	ODS 96B con RS 232	50115049
K-DS M12A-MA-8P-3m-S-PUR	ODSL 30/D 232-M12	50115050
K-DS M12A-MA-5P-3m-1S-PUR	Konturflex Quattro RSX	50116791
KB 500-3000-Y	BCL 500i, lunghezza del cavo 3 m	50110240
KB 301-3000-MA200	BCL 300i, lunghezza del cavo 3m	50120463

Tabella 14.6: Cavi di collegamento apparecchi per l'MA 204i

Avviso!

Gli apparecchi BCL 22 con connettore JST, RFM xx ed RFI xx possono essere collegati direttamente con il cavo stampato.

14.7.2 Occupazione dei contatti dei cavi di collegamento apparecchi

Cavo di collegamento K-D M12A-5P-5000/10000 (a 5-pol. con presa stampata), a cablare		
	Pin	Colore del conduttore
1 br/BN	1	Marrone
3 4 2 ws/WH 5 3 bl/BU	2	Bianco
2 5 3 bl/BU 4 sw/BK	3	Blu
5 gr/GY	4	Nero
	5	Grigio

KB JST 3000 (cavo di collegamento RS 232, spinotto JST a 10 poli, a cablare)			
Segnale Colore del conduttore JST a 10 poli			
TxD 232	Rosso	5	
RxD 232	Marrone	4	
GND	Arancione	9	
FE	Schermatura	10	

15 Manutenzione

15.1 Istruzioni generali di manutenzione

L'MA 204i non richiede manutenzione da parte del proprietario.

15.2 Riparazione, manutenzione

L'apparecchio deve essere riparato solo dal costruttore.

Per riparazioni rivolgersi al proprio ufficio vendite o di assistenza Leuze. Per gli indirizzi si veda la pagina interna/l'ultima pagina di copertina.

Avviso.

Allegare agli apparecchi da inviare alla Leuze electronic per la riparazione anche una descrizione più dettagliata possibile dell'errore.

15.3 Smontaggio, imballaggio, smaltimento

Reimballaggio

Per poter essere riutilizzato in futuro imballare l'apparecchio in maniera che sia ben protetto.

Avviso!

I rifiuti di apparecchiature elettriche elettronici sono considerati rifiuti speciali! Rispettare le norme locali vigenti per il loro smaltimento.

16 Specifiche per terminali Leuze

Interfaccia seriale e modalità di comando

Nella configurazione del gateway di fieldbus si può selezionare il corrispondente terminale Leuze (vedi capitolo 9 «Configurazione»).

Per le esatte specifiche dei singoli terminali Leuze vedere i seguenti sottocapitoli e la descrizione dell'apparecchio.

Il comando seriale corrispondente viene inviato al terminale Leuze in modalità di comando. Al fine di poter inviare il rispettivo comando all'apparecchio RS 232 dopo l'attivazione della «modalità di comando» nel byte 0 (bit di controllo 0.0), settare il corrispondente bit nel byte 2.

In risposta alla maggior parte dei comandi, il terminale Leuze ritrasmette al gateway anche dati, come ad esempio il contenuto del codice a barre, NoRead, la versione dell'apparecchio, ecc. La risposta non viene analizzata dal gateway, ma inoltrata al PLC.

Via file GSD è possibile impostare altri parametri come la velocità di trasmissione e la modalità dati con la validazione «USE GSD settings». Il data frame ed eventualmente la lunghezza sono specificati dalla posizione dell'interruttore. Le modifiche devono tuttavia essere appropriate alle impostazioni dell'apparecchio.

Per BPS 8, BPS 300i e gli scanner manuali occorre tenere presenti alcune particolarità.

16.1 Impostazione standard, KONTURflex (posizione 0 dell'interruttore S4)

Questa posizione dell'interruttore può essere utilizzata con quasi tutti gli apparecchi in quanto un data frame viene anch'esso eventualmente trasmesso. Tuttavia, 00h nel campo di dati viene interpretato dal controllore come fine telegramma/non valido.

L'intervallo tra due telegrammi consecutivi (senza frame) deve essere superiore a 20 ms in questa posizione dell'interruttore, in quanto, diversamente, non è definita una chiara separazione. Le impostazione dell'apparecchio dovranno eventualmente essere adattate.

I sensori di misura Leuze con interfaccia RS 232 (come KONTFURflex Quattro RS) non utilizzano per forza un frame del telegramma, per questo vengono utilizzati anche in posizione 0 dell'interruttore.

Specifica dell'interfaccia seriale

Parametro standard	Standard	
Velocità di trasmissione	9600	
Modalità dati	8N1	
Handshake	Nessuno	
Protocollo	Protocollo frame senza conferma	
Framing	<dati></dati>	
Data mode	Trasparente	

ĭ

Avviso!

Il data frame viene determinato dalla posizione dell'interruttore. Solo la modalità dati e la velocità di trasmissione possono essere addizionalmente impostate tramite file GSD. L'impostazione predefinita corrisponde alla posizione 0 dell'interruttore S4.

Specifica per KONTURflex

Impostazioni sull'MA 204i

- Indirizzo PROFIBUS liberamente selezionabile
- Selettore dell'apparecchio in posizione «0»

Impostazioni sul PROFIBUS

- Module selection (selezione modulo):
 In funzione del numero di raggi impostato, ma minimo «8 Bytes In»
- User parameters (parametri utente):
 «Transparent Mode», «Use GSD-Settings», Baudrate 38400, «8 data bits», «No parity»,
 «2 stop bit»

Impostazioni su KONTURflex

Innanzitutto devono essere effettuate sull'apparecchio le seguenti impostazioni tramite KONTURFlex-Soft:

- Opzionalmente «Autosend (fast)» o «Autosend con dati nel formato Modbus»
- Tempo di ripetizione «31,5ms»
- Velocità di trasmissione Autosend «38.4KB»
- · 2 stop bit, senza parità

16.2 Lettore di codici a barre BCL 8 (posizione 1 dell'interruttore S4)

Specifica dell'interfaccia seriale

Parametro standard	BCL 8
Velocità di trasmissione	9600
Modalità dati	8N1
Handshake	Nessuno
Protocollo	Protocollo frame senza conferma
Framing	<stx> <dati> <cr> <lf></lf></cr></dati></stx>

Specifica della modalità di comando

Per attivare la modalità di comando, il bit 0 deve essere settato a 1 nel byte di controllo 0. Per informazioni più dettagliate vedi capitolo 11.1.3 «Modalità di comando», Figura 11.2.

Bit di controllo	Significato	Comando seriale corrispondente (ASCII)
0	Informazioni sulla versione	V
1	Attivazione/disattivazione porta di lettura	+/-
2	Apprendimento del codice di riferimento 1	RT1
3	Apprendimento del codice di riferimento 2	RT2
4	Configurazione automatica del compito di lettura - Attivazione/Disattivazione	CA+ / CA-
5	Uscita di commutazione 1 attivazione	0A1
6		
7	Uscita di commutazione 1 disattivazione	0D1
8	Stand-by del sistema	SOS
9	Sistema attivo	SON
10	Richiesta Reflector Polling	AR?
11	Emissione della versione del boot kernel con check sum	VB
12	Emissione della versione del programma di decodifica con check sum	VK
13	Resettare il parametro ai valori predefiniti	PC20
14	Riavvio dell'apparecchio	Н

Impostazioni raccomandate

• Modulo di ingresso: in funzione del numero di cifre del codice a barre da leggere.

Per esempio per un codice a barre di 18 cifre (+ 2 byte di stato) è sensato il modulo di ingresso con 20 byte.

16.3 Lettore di codici a barre BCL 22 (posizione 2 dell'interruttore S4)

Specifica dell'interfaccia seriale

Parametro standard	BCL 22
Velocità di trasmissione	9600
Modalità dati	8N1
Handshake	Nessuno
Protocollo	Protocollo frame senza conferma
Framing	<stx> <dati> <cr> <lf></lf></cr></dati></stx>

Specifica della modalità di comando

Per attivare la modalità di comando, il bit 0 deve essere settato a 1 nel byte di controllo 0. Per informazioni più dettagliate vedi capitolo 11.1.3 «Modalità di comando», Figura 11.2.

Bit di controllo	Significato	Comando seriale corrispondente (ASCII)
0	Informazioni sulla versione	V
1	Attivazione/disattivazione porta di lettura	+/-
2	Apprendimento del codice di riferimento 1	RT1
3	Apprendimento del codice di riferimento 2	RT2
4	Configurazione automatica del compito di lettura - Attivazione/Disattivazione	CA+ / CA-
5	Uscita di commutazione 1 attivazione	0A1
6	Uscita di commutazione 2 attivazione	0A2
7	Uscita di commutazione 1 disattivazione	0D1
8	Uscita di commutazione 2 disattivazione	0D2
9		
10		
11	Emissione della versione del boot kernel con check sum	VB
12	Emissione della versione del programma di decodifica con check sum	VK
13	Resettare il parametro ai valori predefiniti	PC20
14	Riavvio dell'apparecchio	Н
15		

Impostazioni raccomandate

• Modulo di ingresso: in funzione del numero di cifre del codice a barre da leggere.

Per esempio per un codice a barre di 18 cifre (+ 2 byte di stato) è sensato il modulo di ingresso con 20 byte.

16.4 Lettore di codici a barre BCL 300i, BCL 500i, BCL 600i (posizione 4 dell'interruttore S4)

Specifica dell'interfaccia seriale

Parametro standard	BCL 300i, BCL 500i, BCL 600i	
Velocità di trasmissione	9600	
Modalità dati	8N1	
Handshake	Nessuno	
Protocollo	Protocollo frame senza conferma	
Framing	<stx> <dati> <cr> <lf></lf></cr></dati></stx>	

Specifica della modalità di comando

Per attivare la modalità di comando, il bit 0 deve essere settato a 1 nel byte di controllo 0. Per informazioni più dettagliate vedi capitolo 11.1.3 «Modalità di comando», Figura 11.2.

Bit di controllo	Significato	Comando seriale corrispondente (ASCII)
0	Informazioni sulla versione	٧
1	Attivazione/disattivazione porta di lettura	+/-
2	Apprendimento del codice di riferimento - Attivazione / Disattivazione	RT+ / RT-
3		
4	Configurazione automatica del compito di lettura - Attivazione/Disattivazione	CA+ / CA-
5	Uscita di commutazione 1 attivazione	0A1
6	Uscita di commutazione 2 attivazione	0A2
7	Uscita di commutazione 1 disattivazione	0D1
8	Uscita di commutazione 2 disattivazione	0D2
9		
10		
11		
12		
13	Parametro - differenza rispetto al record di parametri standard	PD20
14	Resettare il parametro ai valori predefiniti	PC20
15	Riavvio dell'apparecchio	Н

Impostazioni raccomandate

• Modulo di ingresso: in funzione del numero di cifre del codice a barre da leggere.

Per esempio per un codice a barre di 18 cifre (+ 2 byte di stato) è sensato il modulo di ingresso con 20 byte.

16.5 Lettore di codici a barre BCL 90, BCL 900i (posizione 5 dell'interruttore S4)

Specifica dell'interfaccia seriale

Parametro standard	BCL 90, BCL 900i
Velocità di trasmissione	9600
Modalità dati	8N1
Handshake	Nessuno
Protocollo	Protocollo frame senza conferma
Framing	<stx> <dati> <cr> <lf></lf></cr></dati></stx>

Specifica della modalità di comando

Per attivare la modalità di comando, il bit 0 deve essere settato a 1 nel byte di controllo 0. Per informazioni più dettagliate vedi capitolo 11.1.3 «Modalità di comando», Figura 11.2.

Bit di controllo	Significato	Comando seriale corrispondente (ASCII)
0	Informazioni sulla versione	V
1	Attivazione/disattivazione porta di lettura	+/-
2	Modalità di parametrizzazione	11
3	Modalità di regolazione	12
4	Servizio di lettura	13
5		
6		
7		
8		
9		
10		
11		
12		
13		
14	Resettare il parametro ai valori predefiniti	PC20
15	Riavvio dell'apparecchio	Н

Impostazioni raccomandate

• Modulo di ingresso: in funzione del numero di cifre del codice a barre da leggere.

Per esempio per un codice a barre di 18 cifre (+ 2 byte di stato) è sensato il modulo di ingresso con 20 byte.

16.6 LSIS 122, LSIS 222 (posizione 6 dell'interruttore S4)

Specifica dell'interfaccia seriale

Parametro standard	LSIS 122, LSIS 222
Velocità di trasmissione	9600
Modalità dati	8N1
Handshake	Nessuno
Protocollo	Protocollo frame senza conferma
Framing	<stx> <dati> <cr> <lf></lf></cr></dati></stx>

Specifica della modalità di comando

Per attivare la modalità di comando, il bit 0 deve essere settato a 1 nel byte di controllo 0. Per informazioni più dettagliate vedi capitolo 11.1.3 «Modalità di comando», Figura 11.2.

Bit di controllo	Significato	Comando seriale corrispondente (ASCII)
0	Informazioni sulla versione	i
1	Attivazione/disattivazione porta di lettura: 12h/14h (solo LSIS 122)	<dc2> / <dc4></dc4></dc2>
2	Attivazione porta di lettura (solo LSIS 222)	<syn>T<cr></cr></syn>
3	Disattivazione porta di lettura (solo LSIS 222)	<syn>U<cr></cr></syn>
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		

Impostazioni raccomandate

• Modulo di ingresso: in funzione del numero di cifre del codice 2D da leggere.

Per esempio per un codice di 18 cifre (+ 2 byte di stato) è sensato il modulo di ingresso con 20 byte.

16.7 LSIS 4x2i, DCR 202i (posizione 7 dell'interruttore S4)

Specifica dell'interfaccia seriale

Parametro standard	LSIS 4x2i, DCR 202i
Velocità di trasmissione	9600
Modalità dati	8N1
Handshake	Nessuno
Protocollo	Protocollo frame senza conferma
Framing	<stx> <dati> <cr> <lf></lf></cr></dati></stx>

Specifica della modalità di comando

Per attivare la modalità di comando, il bit 0 deve essere settato a 1 nel byte di controllo 0. Per informazioni più dettagliate vedi capitolo 11.1.3 «Modalità di comando», Figura 11.2.

Bit di controllo	Significato	Comando seriale corrispondente (ASCII)
0	Informazioni sulla versione	V
1	Trigger della ripresa dell'immagine	+
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		

Impostazioni raccomandate

Modulo di ingresso: in funzione del numero di cifre del codice 2D da leggere.

Per esempio per un codice di 18 cifre (+ 2 byte di stato) è sensato il modulo di ingresso con 20 byte.

16.8 Scanner manuale (posizione 8 dell'interruttore S4)

Specifica dell'interfaccia seriale

Parametro standard	Scanner manuale	
Velocità di trasmissione	9600	
Modalità dati	8N1	
Handshake	Nessuno	
Protocollo	Protocollo frame senza conferma	
Framing	<dati> <cr> <lf></lf></cr></dati>	

ر |

Avviso!

La modalità di comando non può essere utilizzata con scanner manuali.

Impostazioni raccomandate

 Modulo di ingresso: in funzione del numero di cifre del codice a barre o del codice 2 D da leggere.

Per esempio per un codice di 12 cifre (+ 2 byte di stato) è sensato il modulo di ingresso con 16 byte.

· Modulo di uscita: nessuno

16.9 Apparecchi di lettura RFID RFI, RFM, RFU (posizione 9 dell'interruttore S4)

Specifica dell'interfaccia seriale

Parametro standard	RFM 12,RFM 32 e RFM 62, RFI 32 RFU (via IMRFU)
Velocità di trasmissione	9600
Modalità dati	8N1
Handshake	Nessuno
Protocollo	Protocollo frame senza conferma
Framing	<stx> <dati> <cr> <lf></lf></cr></dati></stx>

Specifica della modalità di comando

Per attivare la modalità di comando, il bit 0 deve essere settato a 1 nel byte di controllo 0. Per informazioni più dettagliate vedi capitolo 11.1.3 «Modalità di comando», Figura 11.2.

Bit di controllo	Significato	Comando seriale corrispondente (ASCII)
0	Informazioni sulla versione	v ¹⁾
1	Attivazione/disattivazione porta di lettura	+/-
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14	Resettare il parametro ai valori predefiniti	R 1)
15	Riavvio dell'apparecchio	Н

¹⁾ Non per IMRFU/RFU

Impostazioni raccomandate

• Modulo di ingresso: in funzione del numero di cifre del codice RFID da leggere.

Per esempio, l'impostazione modulo di ingresso/modulo di uscita con 24 byte risulta opportuna per la lettura di un numero di serie con 16 caratteri (+ 2 byte di stato).

· Modulo di uscita: 4 byte

Anche qui, se viene richiesta la scrittura di dati, l'impostazione con 24 byte è o 32 byte è opportuna. Gli apparecchi RFID attendono i telegrammi/dati in rappresentazione HEX.

16.10 Sistema di posizionamento a codici a barre BPS 8 (posizione A dell'interruttore S4)

Specifica dell'interfaccia seriale

Parametro standard	BPS 8	
Velocità di trasmissione	57600	
Modalità dati	8N1	
Handshake	Nessuno	
Protocollo	Protocollo binario senza conferma	
Framing	<dati></dati>	

Specifica della modalità di comando

Per attivare la modalità di comando, il bit 0 deve essere settato a 1 nel byte di controllo 0. Per informazioni più dettagliate vedi capitolo 11.1.3 «Modalità di comando», Figura 11.2.

Bit di controllo	Significato	Comando seriale corrispondente (HEX)	
		Byte 1	Byte 2
0	Richiesta di informazioni di diagnostica	01	01
1	Richiesta di informazioni sulla marca	02	02
2	Richiesta della modalità SLEEP	04	04
3	Richiesta di informazioni di posizione	08	08
4	Richiesta di misura singola	10	10
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			

Impostazioni raccomandate

Modulo di ingresso: 8 byteModulo di uscita: 4 byte

In questa posizione dell'interruttore, l'MA invia automaticamente ogni 10ms una richiesta di posizione al BPS 8 fino a quando arriva un altro comando tramite il controllore. La richiesta automatica riprende solo dopo una nuova richiesta di posizione da parte del PLC o di un riavvio dell'MA.

16.11 Sistema di posizionamento a codice a barre BPS 300i, sensori ottici di distanza ODSL xx con interfaccia RS 232 (posizione B dell'interruttore S4)

Avviso!

 $\prod_{i=1}^{n} C_{i}^{i}$

Con questa posizione dell'interruttore l'apparecchio si aspetta sempre dati da 6 byte (fisso). Pertanto è possibile trasmettere in maniera sicura una sequenza di telegramma rapida anche senza data frame.

BPS 300i

Specifica dell'interfaccia seriale

Parametro standard	BPS 300i	
Velocità di trasmissione	38400	
Modalità dati	8N1	
Handshake	Nessuno	
Protocollo	Protocollo binario senza conferma	
Framing	<dati></dati>	

Specifica della modalità di comando

Per attivare la modalità di comando, il bit 0 deve essere settato a 1 nel byte di controllo 0. Per informazioni più dettagliate vedi capitolo 11.1.3 «Modalità di comando», Figura 11.2.

Bit di controllo	Significato	Comando seriale corrispondente (ASCII)
0	Trasmettere valore di posizione singolo = single shot	C0F131
1	Trasmettere ciclicamente valori di posizione	C0F232
2	Arrestare trasmissione ciclica	C0F333
3	Diodo laser on	C0F434
4	Diodo laser off	C0F535
5	Trasmettere singolo valore di velocità	C0F636
6	Trasmettere ciclicamente valori di velocità	C0F737
7	Trasmettere singolo valore di posizione e velocità	C0F838
8	Trasmettere ciclicamente valore di posizione e velocità	C0F939
9	Trasmettere informazioni sulla marca	C0FA3A
10	Not used / reserved	
11	Trasmettere informazioni di diagnostica	COFC3C
12	Attivare standby	C0FD3D
13		
14		
15		

Impostazioni raccomandate

Modulo di ingresso: 8 byteModulo di uscita: 8 byte

ODSL 9, ODSL 30 e ODSL 96B

$\overline{}$)
T	

Avviso!

Le impostazioni standard dell'interfaccia seriale dell'ODS devono essere adattate! È possibile trovare maggiori informazioni sulla parametrizzazione dell'interfaccia nella descrizione tecnica del rispettivo apparecchio.

Specifica dell'interfaccia seriale

Parametro standard	ODSL xx	
Velocità di trasmissione	38400	
Modalità dati	8N1	
Handshake	Nessuno	
Protocollo	Trasmissione ASCII, valore di misura a 5 cifre	
Framing	<dati></dati>	

Specifica della modalità di comando

La modalità di comando non può essere utilizzata con ODSL 9, ODSL 30 ed ODSL 96B.

L'ODSL 9/96B deve essere utilizzato in modalità di misura «Precision». L'impostazione della modalità viene effettuata tramite il menu di visualizzazione: Application -> Measure Mode -> Precision. È possibile trovare dettagli in merito nella descrizione tecnica.

16.12 Unità di collegamento modulare MA 3x (posizione C dell'interruttore S4)

Specifica dell'interfaccia seriale

Parametro standard	MA 3x
Velocità di trasmissione	9600
Modalità dati	8N1
Handshake	Nessuno
Protocollo	Protocollo frame senza conferma
Framing	<stx> <dati> <cr> <lf></lf></cr></dati></stx>

Specifica della modalità di comando

Per attivare la modalità di comando, il bit 0 deve essere settato a 1 nel byte di controllo 0. Per informazioni più dettagliate vedi capitolo 11.1.3 «Modalità di comando», Figura 11.2.

Bit di controllo	Significato	Comando seriale corrispondente (ASCII)
0	Informazioni sulla versione	V
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14	Resettare il parametro ai valori predefiniti	PC20
15	Riavvio dell'apparecchio	Н

Impostazioni raccomandate

• Modulo di ingresso: in funzione del numero di cifre del codice da leggere.

Per esempio per un codice a barre di 18 cifre (+ 2 byte di stato + 2 byte di indirizzo slave) è sensata la impostazione con 24 byte.

Avviso

In questa posizione dell'interruttore, nei primi due byte del campo di dati viene inoltre trasmesso l'indirizzo dello slave multiNet!

17 Appendice

17.1 Tabella ASCII

HEX	DEC	CTRL	ABB	DESIGNAZIONE	SIGNIFICATO
00	0	^@	NUL	NULL	Zero
01	1	^A	SOH	START OF HEADING	Inizio della riga di intestazione
02	2	^B	STX	START OF TEXT	Carattere iniziale del testo
03	3	^C	ETX	END OF TEXT	Carattere finale del testo
04	4	^D	E0T	END OF TRANSMISSION	Fine della trasmissione
05	5	^E	ENQ	ENQUIRY	Invito alla trasmissione dati
06	6	^F	ACK	ACKNOWLEDGE	Risposta positiva
07	7	^G	BEL	BELL	Carattere del campanello
08	8	^H	BS	BACKSPACE	Passo all'indietro
09	9	^	HT	HORIZONTAL TABULATOR	Tabulatore orizzontale
0A	10	^J	LF	LINE FEED	Caporiga
0B	11	^K	VT	VERTICAL TABULATOR	Tabulatore verticale
0C	12	^L	FF	FORM FEED	Nuova pagina
0D	13	^M	CR	CARRIAGE RETURN	Ritorno carrello
0E	14	^N	S0	SHIFT OUT	Carattere di commutazione permanente
0F	15	^0	SI	SHIFT IN	Carattere di annullamento commutazione
10	16	^P	DLE	DATA LINK ESCAPE	Commutazione trasmissione dati
11	17	^Q	DC1	DEVICE CONTROL 1 (X-ON)	Carattere di controllo apparecchio 1
12	18	^R	DC2	DEVICE CONTROL 2 (TAPE)	Carattere di controllo apparecchio 2
13	19	^\$	DC3	DEVICE CONTROL 3 (X-OFF)	Carattere di controllo apparecchio 3
14	20	^T	DC4	DEVICE CONTROL 4	Carattere di controllo apparecchio 4
15	21	^U	NAK	NEGATIVE (/Tape) ACKNOWLEDGE	Risposta negativa
16	22	^V	SYN	SYNCRONOUS IDLE	Sincronizzazione
17	23	^W	ETB	END OF TRANSMISSION BLOCK	Fine del blocco di trasmissione dati
18	24	^X	CAN	CANCEL	Non valido
19	25	^Υ	EM	END OF MEDIUM	Fine registrazione
1A	26	^Z	SUB	SUBSTITUTE	Sostituzione
1B	27]^	ESC	ESCAPE	Commutazione
1C	28	^\	FS	FILE SEPARATOR	Carattere di separazione file
1D	29	^]	GS	GROUP SEPARATOR	Carattere separatore gruppo
1E	30	^^	RS	RECORD SEPARATOR	Carattere di separazione sottogruppo
1F	31	^_	US	UNIT SEPARATOR	Carattere di separazione gruppo parziale
20	32		SP	SPACE	Spazio
21	33		!	EXCLAMATION POINT	Punto esclamativo
22	34		"	QUOTATION MARK	Virgolette
23	35		#	NUMBER SIGN	Carattere numerico
24	36		\$	DOLLAR SIGN	Dollaro
25	37		%	PERCENT SIGN	Percentuale
26	38		&	AMPERSAND	«e» commerciale
27	39		1	APOSTROPHE	Apostrofo
28	40		(OPENING PARENTHESIS	Parentesi rotonda (aperta)

HEX	DEC	CTRL	ABB	DESIGNAZIONE	SIGNIFICATO
29	41)	CLOSING PARENTHESIS	Parentesi rotonda (chiusa)
2A	42		*	ASTERISK	Asterisco
2B	43		+	PLUS	Più
2C	44		,	COMMA	Virgola
2D	45		-	HYPHEN (MINUS)	Trattino (meno)
2E	46			PERIOD (DECIMAL)	Punto
2F	47		/	SLANT	Barra (a destra)
30	48		0		
31	49		1		
32	50		2		
33	51		3		
34	52		4		
35	53		5		
36	54		6		
37	55		7		
38	56		8		
39	57		9		
3A	58		:	COLON	Due punti
3B	59		;	SEMI-COLON	Punto e virgola
3C	60		<	LESS THEN	Minore di
3D	61		=	EQUALS	Uguale
3E	62		>	GREATER THEN	Maggiore di
3F	63		?	QUESTION MARK	Punto interrogativo
40	64		@	COMMERCIAL AT	«a» commerciale
41	65		Α		
42	66		В		
43	67		С		
44	68		D		
45	69		Е		
46	70		F		
47	71		G		
48	72		Н		
49	73		I		
4A	74		J		
4B	75		K		
4C	76		L		
4D	77		M		
4E	78		N		
4F	79		0		
50	80		Р		
51	81		Q		
52	82		R		
53	83		S		
54	84		T		
55	85		U		
56	86		V		
57	87		W		
58	88		Х		

HEX	DEC	CTRL	ABB	DESIGNAZIONE	SIGNIFICATO
59	89		Y		
5A	90		Z		
5B	91		[OPENING BRACKET	Parentesi quadrata (aperta)
5C	92		\	REVERSE SLANT	Barra (a sinistra)
5D	93]	CLOSING BRACKET	Parentesi quadrata (chiusa)
5E	94		^	CIRCUMFLEX	Circonflesso
5F	95		_	UNDERSCORE	Sottolineato
60	96		6	GRAVE ACCENT	Grave
61	97		а		
62	98		b		
63	99		С		
64	100		d		
65	101		е		
66	102		f		
67	103		g		
68	104		h		
69	105		i		
6A	106		j		
6B	107		k		
6C	108		I		
6D	109		m		
6E	110		n		
6F	111		0		
70	112		р		
71	113		q		
72	114		r		
73	115		S		
74	116		t		
75	117		u		
76	118		٧		
77	119		W		
78	120		Х		
79	121		у		
7A	122		Z		
7B	123		{	OPENING BRACE	Parentesi graffa (aperta)
7C	124		1	VERTICAL LINE	Trattino verticale
7D	125		}	CLOSING BRACE	Parantesi graffa (chiusa)
7E	126		~	TILDE	Tilde
7F	127		DEL	DELETE (RUBOUT)	Cancella

Stichwortverzeichnis

A	Data Length Code48
Accessori	Byte di stato45
Cavi di alimentazione elettrica 76	Byte di uscita 0
Cavi di collegamento al bus 77	Bit di indirizzo 0 4
Cavi per apparecchi di	Broadcast49
identificazione Leuze 79	Modalità di comando 49
Connettori	New Data50
Apparecchio Leuze	Byte di uscita 1
Apparecchi di lettura/scrittura RFID	Copy to Transmit Buffer51
(RFM/RFI)	Read-Acknowledge50
RFM 12, 32 e 62 90	Send Data from Buffer 50
Impostazione dei parametri di lettura 70	
Particolarità degli scanner manuali 71	C
Lettore di codici a barre (BCL)	Cause degli errori
BCL 22	Dati generali
BCL 300i	Interfaccia
BCL 500i	Collegamenti
BCL 600i	PWR IN28
BCL 8	PWR OUT - Ingresso/uscita di
BCL 90	commutazione30
BCL 900i	Collegamento dell'apparecchio Leuze12
Lettori di codici 2D	Spine del circuito stampato X30 X32 38
DCR 202i	Collegamento elettrico
LSIS 122 87	Alimentazione elettrica e cavo bus13
LSIS 222	Collegamento apparecchio Leuze 12
LSIS 4x2i	Note di sicurezza
Scanner manuale	Configurazione
Sensori ottici di distanza (ODSL) 93	Comigurazione
Sistema di posizionamento a codici	D
a barre (BPS)	_
BPS 300i 93	Dati tecnici
BPS 8	Dati ambientali
Specifica dell'interfaccia seriale 81	Dati elettrici
Specifica della modalità di comando 81	Dati meccanici21
Avvio dell'apparecchio	Indicatori
Avvio dell'apparedelle	Definizioni dei termini
В	Descrizione del funzionamento
	Descrizione dell'apparecchio16
Byte di controllo	Diagnostica
Byte di ingresso 0	Dichiarazione di conformità6
Buffer Overflow 47	Disegni quotati22
Data exist	
Data Loss	E
New Data	Elenco dei tipi
Next block ready to transmit 47	Eliminazione degli errori
Service Mode Active	
Write-Acknowledge	G
Byte di ingresso 1	Garanzia della qualità

Imballaggio	Byte di uscita
Manutenzione 80 Manutenzione straordinaria 80 Messa in servizio 59 Messa in servizio rapida 11 Modalità di assistenza Comandi 42 Informazioni 42 Modalità di comando 16, 56 Modalità di raccolta 16, 52 Modalità trasparente 16, 52 Modi operativi Apparecchio Leuze di assistenza 18 Funzionamento 18 Gateway di fieldbus di assistenza 18 Montaggio Montaggio dell'apparecchio 11, 25 Posizionamento dell'apparecchio, scelta del luogo di montaggio 11, 26	
N Note di sicurezza9	
PROFIBUS DP19	
R Riparazione80	
S Simboli .6 Sistemi fieldbus 19 Smaltimento 80 Smontaggio 80 Struttura del telegramma 80 Byte di ingresso 45	