
Leuze electronic

the sensor people

MSI-SR-SM42OS

Zero Speed Monitor

Original operating instructions

© 2016 Leuze electronic GmbH + Co. KG In der Braike 1 D-73277 Owen/Germany Phone: +49 7021 573-0 Fax: +49 7021 573-199 http://www.leuze.com info@leuze.de

1	Abou	It This Manual	5
	1.1	What Does This Manual Describe?	5
	1.2	For Whom is This Manual Intended?	5
	1.3	Safety Notices	5
	1.4	Intended Use	6
2	Gen	eral Description	7
	2.1	Type Overview	7
	2.2	Description	7
	2.2.1	Controls and connection terminals	8
	2.2.2	Indicators	9
	2.3	Device Function	9
	2.4	Device Configuration	. 10
	2.5	Device Operation	. 11
	2.5.1	Operating Modes	. 11
	2.5.2	2.5.2 Selection of the Operating Mode (S1, S2)	. 12
	2.5.3	Setting of the frequency to be monitored	. 12
	2.5.4	Operation with low demand mode of the safety function	. 12
	2.5.5	Error Detection	. 12
	2.5.6	Sensor Inputs (I1 - I4)	. 12
	2.5.7	RESET – Function (I5)	. 15
	2.5.8	Bypass Function	. 16
	2.6	Outputs	. 17
	2.6.1	Safety-related Outputs (Q1 - Q4)	. 17
	2.6.2	Signal Outputs (X1, X2)	. 17
	2.7	Error Behaviour and Diagnosis	. 18
	2.7.1	Error classes	. 19
	2.7.2	Types of errors and causes	. 20
	2.7.3	Change of the configuration of the device	. 21
	2.7.4	Short circuit of input circuits to UB	. 21
	2.7.5	Earth fault of input circuits (I1 – I4)	. 21
	2.7.6	Short circuit of input circuit to input circuit (I1 – I4)	. 21
	2.7.7	Removal or addition of output wiring while operating voltage is present.	. 21
	2.7.8	Error at I5 (RESET)	. 21
	2.7.9	Error at I6 Bypass	. 22

▲ Leuze electronic

3	Insta	allation	23
	3.1	Installation Conditions	23
	3.2	Connection Diagram	23
	3.3	Dimensions	23
	3.4	Safety precautions before starting installation/dismantling	24
	3.5	Mounting	24
	3.6	Dismantling	24
	3.7	Protection Circuit	24
4	Арр	lication Examples	25
	4.1	Zero speed monitor with incremental encoder (operating mode A-1)	25
	4.2	4.2 Zero speed monitor with initiators (operating mode A-2)	
	4.3	Zero speed monitor with initiators (operating mode B-1)	27
	4.4	Zero speed monitor with initiators (operating mode C-1)	28
5	Calc	culation Example	29
	5.1	Determination of the number of pulses	29
	5.2	Determination of the cutoff frequency to be set	29
6	Sen	sors	30
	6.1	Incremental Encoders	30
	6.2	Proximity Switches	
7	Tecl	hnical Data	31

1 About This Manual

1.1 What Does This Manual Describe?

This manual describes the Standstill Monitor MSI-SR-SM42OS and its functions. In addition to the specific configurations on switches and terminals, the basic mode of operation of the functions are explained in detail. Installation instructions, measures and regulations to be observed, technical data with interface description, error messages and error handling complete the manual.

The symbol "ATTENTION" is used in this manual as follows:

"ATTENTION" indicates a potentially hazardous situation or state which, if not avoided, could result in minor or moderate injuries. "ATTENTION" is also used to warn against unsafe practices or obvious misuse, as well as for situations which can result in material damage or personal injury.

1.2 For Whom is This Manual Intended?

This manual contains the information required for proper usage of the products it describes. The products must only be installed by skilled personnel and the corresponding VDE regulations (German Association for Electrical, Electronic & Information Technologies) or the applicable standard in the respective country must be observed. Therefore, this manual is aimed at technically qualified personnel such as mechanical and electrical engineers, safety representatives, PLC programmers, switch cabinet constructors, electricians, machine/system operators, commissioning engineers, service and maintenance personnel.

1.3 Safety Notices

- Degree of protection according to DIN EN 60529.
- Limited contact protection.
- Case / terminals: IP 40 / IP 20.
- Finger-proof according to DIN EN 50274.

Please observe the following safety instructions:

- The installation, commissioning, modification and retrofitting must only be performed by a qualified electrician.
- Disconnect the device / the system from the power supply before starting work. In the case of installation and system errors, mains voltage can be present on the control circuit in the case of non-galvanically isolated devices.
- Observe the electrotechnical and professional trade association safety regulations for the installation of the equipment.
- Opening the case or other manipulation voids any warranty.
- In the case of improper use or any use other than for the intended purpose, the device must no longer be used and any warranty claim is void. Invalidating causes can be: strong mechanical loading of the device such as, e.g. in the case of falling or voltages, currents, temperatures, humidity outside the specification.
- Always check all safety functions in accordance with the applicable regulations during initial commissioning of your machine / system and observe the specified inspection cycles for safety devices.
- In applications with low safety function requirements, a proof-test has to be performed once a year (power-cycling the device, triggering the safety functions, e.g. by means of exceeding the frequency).

1.4 Intended Use

The device described in this manual is used for the protection of people, the environment, the machine and the material in accordance with the framework Directive 89/391/EEC, the Machinery Directive 2006/42/EC, the Use of Work Equipment Directive 89/655/EEC applicable in the EU and applicable legal regulations and standards in other countries (e.g. USA with the safety standards according to OSHA 29 CFR 1910.xxx, the concepts and technologies for machine safety according to OSHA 3067, product liability according to NPFA 70, NFPA 79, ANSI B11).

If used as prescribed and properly maintained, the device normally poses no risks either to property or to the health of personnel. However, hazards may arise from connected actuating elements such as motors, hydraulic equipment etc., if the entire system or machine is improperly configured, installed, serviced or operated, if the instructions in this operating manual are not observed, or in the case of interventions by insufficiently qualified personnel.

The device has been constructed using state-of-the-art-technology and according to recognised safety regulations. Nevertheless, during use it may still present risks to the life and limb of the user or third parties and the possibility of damage to machines, systems or other property.

The device must only be used when in proper working condition, as well as according to its prescribed usage, with due regard given to safety, awareness of any hazards and following the instructions enclosed with the equipment and contained in this operating manual. Reliable and safe operation of the system requires proper transport, storage and installation as well as careful operation and maintenance. In particular, faults which can adversely affect the safety must be rectified immediately.

2 General Description

2.1 Type Overview

- Designation: Standstill Monitor
- Type MSI-SR-SM42OS -01, 0.5 - 99 Hz MSI-SR-SM42OS -03, 0.5 - 99 Hz
- Design: 22.5 mm case width

50133030 (pluggable screw terminals) 50133031 (pluggable spring-loaded terminals)

2.2 Description

The device MSI-SR-SM42OS provides the reliable monitoring of an input signal frequency of signal transmitters or sensors connected to the device and switches outputs on or off depending on a frequency limit value set on the device.

Order number

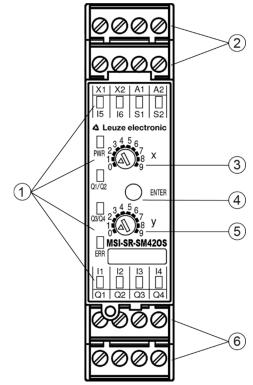


Figure 1: Device Description

1	Indicators				
2	Connection terminals				
3	Rotary switch X				
4	ENTER button				
5	Rotary switch Y				
6	Connection terminals				

2.2.1 Controls and connection terminals

Control	Use
х	10-stage rotary switch for setting the frequency to be monitored (10th position)
Y	10-stage rotary switch for setting the frequency to be monitored (1st position)
ENTER	Button for application of the system configuration
Connection terminals	Use
A1	Operating voltage U _B
A2	Ground
11	Sensor input
12	Sensor input or configuration input (depending on the operating mode group)
13	Sensor input or configuration input (depending on the operating mode group)
14	Sensor input or configuration input (depending on the operating mode group)
15	Restart lock input (RESET signal) or configuration input RESET
16	Bypass input
S1	Configuration input, operating mode group
S2	Configuration input, operating mode group
Q1	Safe output
Q2	Safe output
Q3	Safe output (inverted)
Q4	Safe output (inverted)
X1	Signal output
X2	Signal output

Table 1: Controls and connection terminals

2.2.2 Indicators

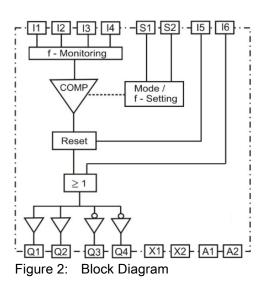
Status information of the inputs, outputs, power supply and error states is displayed using optical indicators (LEDs) on the front panel of the module. The rotary switch indicates the specified frequency to be monitored.

Name	Colour	Norma	al operation	in the case of error		
PWR	green	+24V	flashes (for findin	g the old switch position after change)		
Q1/Q2	green	HIGH \rightarrow on	$LOW \rightarrow off$	-		
Q3/Q4	green	HIGH \rightarrow on	$LOW \rightarrow off$	-		
ERR	red	off				
I1	green	HIGH \rightarrow on	$LOW \rightarrow off$			
12	green	HIGH \rightarrow on	$LOW \rightarrow off$			
13	green	HIGH \rightarrow on	$LOW \rightarrow off$			
14	green	HIGH \rightarrow on	$LOW \rightarrow off$	See Chapter 2.7		
15	green	HIGH \rightarrow on	$LOW \rightarrow off$			
16	green	HIGH → on	$LOW \rightarrow off$			
S1	green	HIGH → on	$LOW \rightarrow off$			
S2	green	HIGH → on	$LOW \rightarrow off$			

Table 2: Indicators

2.3 Device Function

The device is used for standstill monitoring, for example of drives, in order to enable users to safely access machine or system parts where dangerous movements can occur.


Using the device, a speed is monitored for exceeding the specified limit value, i.e. the safe speed range is below the specified limit value. Applications can be, for example, the unlocking of interlocks or the monitoring of slowly rotating axes in setting up/maintenance mode.

Before the device is put into operation, it must be configured accordingly for its use, i.e. the frequency to be monitored, the operating mode (A, V, C or D) and the type of restart lock (RESET) must be set and saved.

During operation, the device monitors the frequency of the signals at the inputs I1-I4 and compares this with the frequency set at the rotary switches. If the measured frequency is smaller than the specified frequency, output signals are produced which are transmitted to the outputs Q1 - Q4 depending on the status of the restart lock (RESET) (see Block Diagram 1). In order to prevent constant activation and deactivation of the output signals close to the specified frequency, switching hysteresis is installed (see Point 2.5). The response time of the device and its outputs is dependent on the frequency measured at the inputs.

If an error occurs on the device or there is a power failure, all safety-related outputs Q1 - Q4 deactivate (LOW level at the terminals). This must be strictly observed during the consideration of the safety function on a machine or system.

2.4 Device Configuration

The setting or modification of a configuration at the switches and terminals must only be performed when the complete system is switched off, i.e. without application of an operating voltage at the terminals A1/A2.

After the required functions/operating modes have been set by external wiring of the terminals I5 (RESET), S1, S2 and optionally I2, I3, I4 (depending on the selected operating mode group) and the speed to be monitored has been set at the rotary switches, the operating voltage must be applied while the ENTER button is pressed.

As soon as the ERR indicator starts flashing, the ENTER button must be released again within three seconds. Afterwards, the selected operating mode is saved and active.

If the ENTER button is pressed for longer than 5 seconds after the LED has started flashing, an error is displayed at the ERR indicator (internal system error).

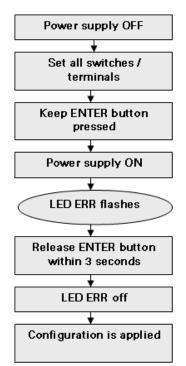


Figure 3: Device Configuration

2.5 Device Operation

There is a number of different operating groups (A, B, C or D) for the realisation of the function of standstill monitoring. Which operating mode is set or active is dependent on the levels at the configuration inputs S1 and S2 and if necessary on the input wiring at the inputs I2-I4 (depending on the selected operating mode group, see Table 3).

2.5.1 Operating Modes

Operating mode	Sensor signals	11	12	13	14	S1	S2	Cable break- detection	Stuck-at-high- detection	Crossover	Maximum achievable safety level of the application
A-1		А	в	A	B	0	0	yes	yes	yes	SIL 3 PL e Cat 4
A-2		А	в	А	B	0	0	yes	yes	yes	SIL 3 PL e Cat 4
B-1	клада на	A	A	0	0	0	1	yes	yes	yes	SIL 1 PL c Cat 2
B-2 ¹⁾	кладони и на	А	в	0	1	0	1	yes	yes	no	SIL 2 PL d Cat 3
B-3	A A	А	0	1	0	0	1	no	no	no	SIL 1 PL c Cat 1
C-1	A A A A A A A A A A A A A A A A A A A	А	PLC	А	0	1	0	yes	yes	yes	SIL 2 PL d Cat 3
C-2	A A A A A A A A A A A A A A A A A A A	А	sw	Α	1	1	0	yes	yes	yes	SIL 2 PL c Cat 2
D-1		А	PLC	0	0	1	1	Process error	Process error	no	SIL 2 PL d Cat 3
D-2	A	A	sw	0	1	1	1	Process error	Process error	no	SIL 1 PL c Cat 2

¹⁾ In operating mode B-2 the indicated safety level can only be maintained if the sensor lines are single jacket cables and laid in protected or secured enclosures.

Table 3:Operating Modes

Table 3 shows which error detection options are possible for connection of the sensor concerned using the device. The maximum achievable safety levels shown in the table are guide values for users and are also determined definitively by the sensors used and their safety characteristics as well as their line routing.

2.5.2 Selection of the Operating Mode (S1, S2)

The different operating modes (sensor connection variants) can be subdivided into 4 operating mode groups A, B, C and D.

Operating Mode Group A (S1 = 0, S2 = 0):

Monitoring of one or two incremental encoders (HTL output) or two independent sensor signals with inverted outputs and a 90° phase shift against each other.

Operating Mode Group B (S1 = 0, S2 = 1):

Monitoring of one or two independent sensor signals, optionally with or without inverted outputs.

Operating Mode Group C (S1 = 1, S2 = 0):

Monitoring of one independent sensor signal with inverted outputs in combination with another enabling signal (static)

Operating Mode Group D (S1 = 1, S2 = 1):

Monitoring of a single sensor signal in combination with another enabling signal (static).

2.5.3 Setting of the frequency to be monitored

The speed to be monitored results from the setting at the two rotary switches on the device and the available "translation" of the speed into a frequency. For example, a gear wheel with 10 teeth installed on an axis produces a frequency of 10 Hz at one revolution per second.

The number of revolutions is monitored indirectly by, for example, measuring and evaluating the frequency produced by a gear and the proximity switches.

The monitoring frequency is set at the two rotary switches X and Y. The value at the rotary switch X represents the first, higher significant digit while the value at the rotary switch Y stands for the second, lower significant digit of the specified frequency.

The setting 00 at the rotary switches X and Y produces a monitoring frequency of 0.5 Hz for the devices with 99 Hz maximum setting and is 0.1 Hz for the devices with 9.9 Hz maximum setting.

Example

The speed to be monitored is 5.2 Hz:

A device with an adjustable frequency range 0.1 - 9.9 Hz is selected for this and the value 5 is set at the rotary switch X and the value 2 at the rotary switch Y.

2.5.4 Operation with low demand mode of the safety function

If the safety function of the device is seldom required (PFD Application, see IEC 61508), a proof test interval of 1 year must be defined. For example, this can be necessary when monitoring for a speed for over-speed if the speed set at the device is never exceeded in normal operation of the machine.

2.5.5 Error Detection

Error detection (e.g. cable break detection) as shown in Table 3 is performed depending on the selected operating mode. Such an error is indicated at the signal output X1 using an error code.

2.5.6 Sensor Inputs (I1 - I4)

The actuation of the inputs I1, I2, I3 and I4 for the frequency measurement is performed using proximity switches with PNP output or incremental encoders with HTL output. (e.g. programmable incremental encoder Type DKS40 (SICK)).

Depending on the set operating mode, the inputs I2 - I4 are also used if necessary for the configuration of the device (see Table 3).

The proximity switches / incremental encoders are not supplied with power by the device. However, the GND connections must be connected with each other with low resistance. Proximity switches can either be connected singly or in pairs.

The connection of two proximity switches offset by 180° in the operating mode B-2 (e.g. on a gear disc/toothed rack) must be made so that at least one initiator is activated in any position of the disc, i.e. a HIGH level is provided. In order to guarantee this, the asymmetry between tooth and depression on the gear disc must show a duty cycle of 1 : 1.5. Thereby, the initiators must each be exactly aligned with the middle of a tooth or a depression.

The spacing of a depression on the gear disc must be greater than the switching distance of the initiator used. In contrast, the spacing of a tooth must be selected so that it is maximum half the switching distance of the initiator. The entries 0° -360° refer to a segment (tooth + gap).

The minimum requirements of the signal must strictly be observed. LOW or HIGH time must be greater than 200 $\mu s.$

2.5.6.1 Duty cycle and phase offset of the sensor signals

The following duty cycles and phase offsets of the sensor signals must be complied with:

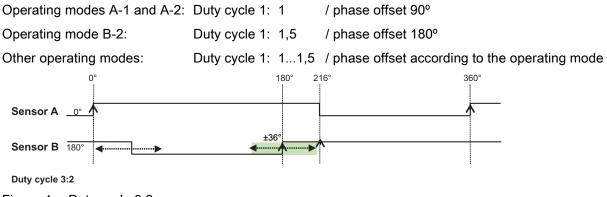
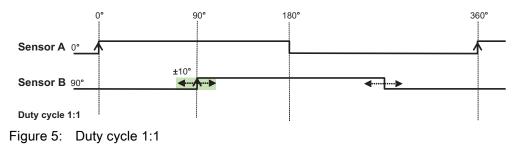
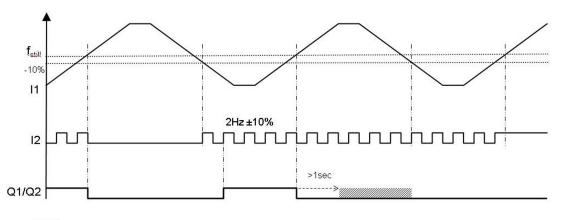



Figure 4: Duty cycle 3:2

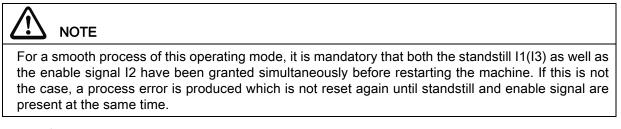
Measurement tolerance: for 180° sensor arrangement $\rightarrow \pm 36^{\circ} \rightarrow$ Cutoff frequency = 2 kHz


Measurement tolerance: for 90° sensor arrangement $\rightarrow \pm 10^{\circ} \rightarrow$ Cutoff frequency = 2 kHz

2.5.6.2 Pulse form of the dynamic enable signal (I2) for the operating modes C-1 and D-1

A dynamic signal with f = 2 Hz at I2 is deemed as enable signal and can together with the standstill at I1(I3) produce an output signal at Q1, Q2. If the enable signal I2 and standstill I1(13) are different, no output signal is produced at Q1, Q2.

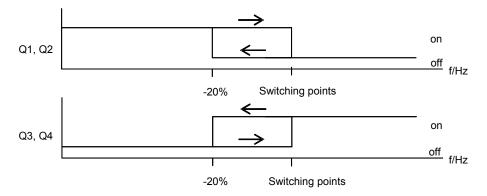
For a smooth process of this operating mode, it is mandatory that both the standstill I1(I3) as well as the enable signal I2 have been granted simultaneously before restarting the machine. If this is not the case, a process error is produced which is not reset again until standstill and enable signal are present at the same time.



Process error for dynamic input

2.5.6.3 Pulse form of the static enable signal (I2) for the operating modes C-2 and D-2

A static signal at I2 is deemed as enable signal and can together with the standstill at I1(I3) produce an output signal at Q1, Q2. If the enable signal I2 and standstill I1(13) are different, no output signal is produced at Q1, Q2.



///// Process error for static input

Figure 7: Pulse form of the static enable signal (I2) for the operating modes C-2 and D-2

2.5.6.4 Hysteresis

The hysteresis prevents the enable being constantly activated and deactivated if the measured frequency value fluctuates around the frequency to be monitored. Therefore, a frequency range in which no switching action is performed is kept in every measuring range. If the measured frequency exceeds the frequency to be monitored, the enable is deactivated immediately. If the measured frequency is less than the frequency to be monitored minus the hysteresis, the enable is activated again.

This produces switching points at 40 Hz and 32 Hz for a monitored frequency of 40 Hz.

2.5.6.5 Cutoff frequency

The cutoff frequency for the sensor inputs I1-I4 is 2 kHz. Exceeding this frequency is detected and the outputs are switched off in a safe state.

2.5.6.6 Vibration during standstill

It can happen during standstill that a transmitter is exactly on the edge of a tooth of the gear disc and produces a frequency due to vibrations in the system while the other transmitter is permanently HIGH or LOW. In this case, the enable is not deactivated for two-channel monitoring while the vibration frequency is below the set frequency. The status "Vibration during standstill" is detected and indicated at the signal output X1 using an error code.

2.5.6.7 Requirements for the sensors and signal transmitters

The connected sensors and signal generating equipment should comply with the relevant technical standards.

For example, these are EN 60947-5-2 or EN 60947-5-3 for proximity switches and IEC 61131 for programmable logic controllers.

2.5.7 RESET – Function (I5)

2.5.7.1 Configuration of the RESET function

The RESET behaviour of the device (with or without restart lock) is defined during the device configuration. If HIGH is present at input I5 during the configuration process, automatic operation without restart lock (Automatic RESET) is set; if LOW (open input) is present at the input I5, a manual, monitored RESET (operation with restart lock) is set.

At every Power Up during later operation, the state of the input I5 must correspond to the state which has been configured. Differences are signalled as configuration errors.

2.5.7.2 Manual Reset

For operation with manual reset (operation with restart lock), a transfer of the internal output signal of the comparator is made to the outputs Q1-Q4 if the input I5 is activated (HIGH) and then deactivated again (LOW) (pulse duration 0.1 - 5 s) whereby the output signal with the falling flank is transmitted to I5.

2.5.7.3 Automatic Reset

In the case of automatic RESET (operation without restart lock), the internal output signal of the comparator is transferred directly to the outputs if the input I5 is activated (HIGH signal). An open input I5 during operation does not result in a system error for the automatic RESET function.

2.5.7.4 External Device Monitoring (EDM)

The input I5 is also used for external device monitoring (EDM) The positively driven normally closed contacts (NC contacts) of contactors or relays which are actuated by Q1/Q2 (or Q3/Q4 for interlocks locked by magnetic force) must (connected in series) be connected to the input I5 irrespective of whether a manual or automatic reset is used.

2.5.8 Bypass Function

Using the Bypass input I6 of the MSI-SR-SM42OS, the Reset function (which influences transmission of the signals to the outputs Q1 - Q4) can be bridged (ODER function). If the input I6 is not wired (LOW), the outputs Q1 - Q4 are activated in accordance with the selected RESET function. If the input I6 is wired (HIGH), the outputs Q1 and Q2 are permanently HIGH and Q3 and Q4 permanently LOW irrespective of the status at the inputs I1 - I4.

The generation of the bypass signal must meet at least the same safety requirements as the operating mode and the designated safety function.

2.5.8.1 Bypass in the case of manual reset

If input I6 is activated, the outputs Q1-Q2 are activated irrespective of the status at the sensor inputs I1 - I4 and irrespective of whether there is a manual Reset pulse at I5.

After ending the Bypass function at I6 (LOW), the outputs are not activated again until the measured frequency is below the set cutoff frequency and a manual Reset signal has been sent to I5.

2.5.8.2 Bypass in the case of automatic reset

If input I6 is activated, the outputs Q1-Q2 are activated irrespective of the status at the sensor inputs I1 - I4 and irrespective of whether there is an automatic Reset signal (HIGH) at I5.

After ending the Bypass function at I6 (LOW), the outputs are not activated again until the measured frequency is below the set cutoff frequency and a HIGH signal is present at I5.

2.6 Outputs

2.6.1 Safety-related Outputs (Q1 - Q4)

Q1, Q2 HL output, safety-related

Q3, Q4 HL output, (inverted to Q1 or Q2)

The safety-related semiconductor outputs Q1 - Q4 of the module can be loaded up to 2 A (ohmic load) and have permanent short-circuit protection. The switching capability of the outputs is continuously monitored. The outputs are periodically switched off individually for a short time and checked in doing so. In the case of an error, all the outputs Q1 - Q4 are switched to LOW.

In the case of single-channel actuation of an actor, it must be noted that the switch-off path in the case of an external short circuit (Stuck-at-HIGH) is not effective due to the operating principle. Such types of errors must be ruled out using suitable design measures (e.g. protected cable routing, installation in the switch cabinet).

Q1/Q2 can be used, for example, for the actuation of locks maintained by spring force.

Q3/Q4 can be used, for example, for the actuation of locks maintained by magnetic force.

If an error occurs on the device or there is a power failure, all safety-related outputs Q1 - Q4 are switched off (LOW level at the terminals). This must be strictly observed during the consideration of the safety function on a machine or system.

Outputs Q1/Q2 can be used up to SIL 3.

Outputs Q3/Q4 cann be used for the activation of locks maintained by magnetic force up to SIL 1.

In case of single-channel actuation of an actor: If an internal error occurs, upon request there may be an 20 ms delay (approx.) in the respective output switching off. An output in safe state can falsely switch on for about 20 ms before the error is detected and the device finally shuts down. Whether this behaviour is acceptable has to be evaluated for each application individually.

2.6.2 Signal Outputs (X1, X2)

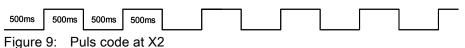
X1 / X2 are not safety-related semiconductor outputs for signal purposes.

The signal output X1 produces a pulse code which gives information about the error status of the device and can be used for diagnostics purposes (e.g. by a PLC) (see also Table 5, Chapter 2.7).

Example

Output of an error code at X1:

Figure 8: Output of an error code at X1


Flashing pulse = 250 ms, pause in between = 750 ms

The output status of the safety-related outputs Q1 - Q4 can be diagnosed using the signal output X2.

Level at X2	Output status Q1/Q3	Comment				
LOW	Output Q1/Q2 => LOW	The outputs Q1 and Q2 are switched off.				
	Output Q3/Q4 => HIGH	The outputs Q3 and Q4 are switched on.				
HIGH	Output Q1/Q2 => HIGH	The outputs Q1 and Q2 are switched on.				
	Output Q3/Q4 => LOW	The outputs Q3 and Q4 are switched off.				
Puls code 1 x	Output Q1/Q2 => LOW Output Q3/Q4 => HIGH	The outputs Q1 and Q2 are switched off and the outputs Q3 and Q4 are switched on; however the outputs change their status as soon as there is a manual RESET signal (input I5).				

Table 4:Signal output X2

Pulse code at X2:

The corresponding types of errors are indicated using the various LEDs of the device in the case of an error (see also Table 5, Chapter 2.72.7).

2.7 Error Behaviour and Diagnosis

The detection of errors inside the device or in its actuation results in switching off the safety-related outputs Q1 - Q4 of the device (LOW level).

In addition, the ERR LED displays an error code (flashing every 2 seconds). The deactivation can be revoked if necessary by the user by elimination of an error (e.g. in the control) and by switching off the operating voltage and then switching it on again.

2.7.1 Error classes

Error Behaviour and Diagnosis										
	Error type	Pulse	e code and	displays	Device status					
		X1	ERR	LED						
1.	Error cannot be rectified	Switch	Switch device off/on \rightarrow Error persists \rightarrow Device defective							
1.1	Internal system error	HIGH	On	-	Outputs Q1, Q2, Q3, Q4 \rightarrow LOW					
2.	Serious error	Rectify	error \rightarrow Sw	vitch device	off/on \rightarrow OK					
2.1	Cutoff frequency	14 x	flashing	-	Outputs Q1, Q2, Q3, Q4 → LOW					
2.2	Operating voltage	13 x	flashing	-	Outputs Q1, Q2, Q3, Q4 → LOW					
2.3	Power On configuration	12 x	flashing	PWR/S2	Outputs Q1, Q2, Q3, Q4 → LOW					
2.4	Rotary switch configura- tion error	12 x	flashing	PWR	Outputs Q1, Q2, Q3, Q4 \rightarrow LOW					
2.5	Operating mode configu- ration error	12 x	flashing	S2	Outputs Q1, Q2, Q3, Q4 \rightarrow LOW					
2.6	Discrepancy error	11 x	flashing	S1	Outputs Q1, Q2, Q3, Q4 → LOW					
2.7	Sensor error I1, I2, I3, I4	10 x	flashing	l1,l2, l3,l4	Outputs Q1, Q2, Q3, Q4 → LOW					
3.	Minor errors	Correct	error → OI	<						
3.1	Process error, operating mode C or D	1 x	off		no effect					
3.2	Process error, RESET	2 x	off		no effect					
3.3	Process error, Startup Bridging	3 x	off		no effect					
3.4	Vibration	4 x	off		no effect					
3.5	90° phase shift in operat- ing mode A could not be tested	5 x	5 x off		no effect					
No e	No error									
			off							

Table 5: Error classes

2.7.2 Types of errors and causes

Error type	Description of a possible error cause / troubleshooting
Internal system error	Internal device error
	✤ Device faulty, please replace
Cutoff frequency	The upper cutoff frequency of the device has been exceeded
	Check input frequency, see chapter Fehler! Verweisquelle konnte nicht gefunden werden., "Fehler! Verweisquelle konnte nicht gefunden werden."
Operating voltage	The operating voltage limits are not complied with
	Check operating voltage, see chapter Fehler! Verweisquelle konnte nicht gefunden werden., "Fehler! Verweisquelle konnte nicht gefunden werden."
Power On configuration	Any of the configuration elements has been changed in the switched off condition.
	Restore original operating mode, or apply changed configu- ration.
Rotary switch configuration error	The configured standstill speed on the two rotary switches has been changed
	Restore original monitoring speed or apply changed monitor- ing speed
Operating mode configuration error	The operating mode configured at S1, S2 and I2, I3, I4, I5 has been changed
	Restore original operating mode, or apply changed configu- ration.
Sensor error I1, I2, I3, I4	The sensor signal at the inputs I1 - I4 is not present/invalid
	Check sensors and sensor cables for possible defects (breaks, short circuits,)
Process error, operating mode C	A signal (e.g. PLC) has failed in the operating mode B
or D	Check sensors and sensor cables for possible defects (breaks, short circuits,)
Process error, RESET	The signal for the manual RESET at I5 was too long
	Check RESET button, check RESET button cable for short circuit
Process error, Startup Bridging	The signal for the Startup Bridging at I6 was too long
	Check source of signal for startup bridging, check cable at I6 for short circuit
Discrepancy error	The input frequency at I1/ I3 was different for longer than 30 sec- onds in comparison with the input frequency I2 / I4
	Check sensors and sensor cables for possible defects (breaks, short circuits,)
Vibration	Changing signals occur at the sensor inputs I1 – I4, triggered, for example, by vibrations of the machine.
	bampen vibrations of sensor(s)
Phase shift test	90° phase shift of sensors could not be tested
	Constant speed for measuring is required

Table 6:	Types of errors and causes
1 4010 0.	

2.7.3 Change of the configuration of the device

A change of the configuration elements (rotary switches X, Y, S1 and S2 (and, if applicable, also I2, I3 and I4 depending on the operating mode group) in the switched-off condition is only detected by the device when an operating voltage is applied.

During operation, a change of the rotary switches X and Y or a change of the logical level at the inputs S1 and S2 (if applicable also I2, I3 and I4) results in immediate removal of all safety-related output signals and lighting the Error indicator of the module concerned. A restart of the program process is not possible again until either the original operating mode has been set or a new operating mode has been defined and confirmed (new configuration).

Pressing the Enter button during operation is ignored.

2.7.4 Short circuit of input circuits to UB

A short circuit on the cables of the input circuits to UB can result in incorrect generation of safety-related output signals.

2.7.5 Earth fault of input circuits (I1 – I4)

Earth fault of input circuits is detected as cable break and thus as sensor error. The outputs are switched off.

2.7.6 Short circuit of input circuit to input circuit (I1 – I4)

A short circuit on the cables of the input circuits between each other is detected as a sensor error (crossover). In this case, the outputs are switched off. In operating mode B-2 the crossover will not be detected.

2.7.7 Removal or addition of output wiring while operating voltage is present.

- Short circuit of output circuits to A2 (earth fault, only applies for HL outputs): A short circuit to A2 potential (earth fault) is detected in all output circuits either immediately or on request of the function.
- Short circuit of output circuits to A1 (earth fault, only applies for HL outputs): A short circuit to A1 potential (earth fault) is detected in all output circuits immediately.

2.7.8 Error at I5 (RESET)

- Not opening at the terminal I5 in the case of manual RESET during operation: No enable, because a pulse signal is expected. during Power Up: Configuration error (system error)
- Not closing at the terminal I5 in the case of manual RESET No enable, because a pulse signal is expected.
- Not opening at the terminal I5 in the case of automatic RESET No detection as this can occur in normal operation.
- Not closing at the terminal I5 in the case of automatic RESET during operation: No enable because RESET signal is not present. during Power Up: Configuration error (system error)

2.7.9 Error at I6 Bypass

- Not opening at the terminal I6 in the case of manual RESET Enable persists because ODER link switches on.
- Not closing at the terminal I6 in the case of manual RESET no enable using Bypass I6
- Not opening at the terminal I6 in the case of automatic RESET Enable persists because ODER link switches on.
- Not closing at the terminal I6 in the case of automatic RESET no enable using Bypass I6

3 Installation

3.1 Installation Conditions

- The system must be installed in a switch cabinet with a protection class of at least IP54.
- The module is mounted on a standard rail according to EN 50022.
- The standard rail must be connected to protective earth (PE).
- The system and the system inputs must always be supplied with power from a power supply.
- The external power supply must comply with the regulations for low voltages with safe separation (SELV, PELV according to IEC 60536) and DIN EN 50178 (Electrical equipment for use in power installations).

3.2 Connection Diagram

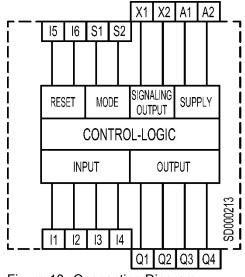


Figure 10: Connection Diagram

3.3 Dimensions

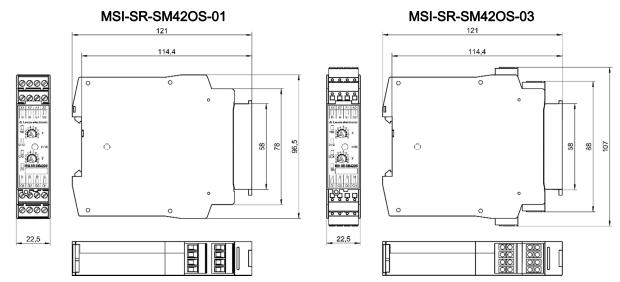


Figure 11: Dimensions

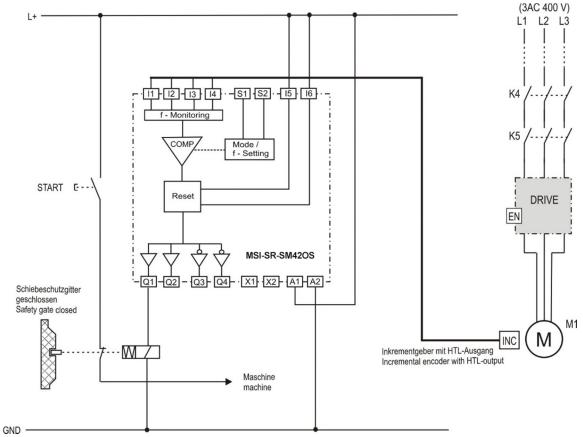
3.4 Safety precautions before starting installation/dismantling

Take the following safety precautions before starting installation / assembly or dismantling:

- bisconnect the device / the system from the power supply before starting work.
- ✤ Secure the machine / system against being switched on again.
- ✤ Confirm that no voltage is present.
- 𝔄 Ground the phases and short to ground briefly.
- ♦ Cover and shield neighbouring live parts.

3.5 Mounting

- The module must be attached to the standard rail and latched.
- The wiring of the system is performed afterwards.


3.6 Dismantling

- The wiring of the system must be detached first.
- The module can be removed after unlocking the standard rail latching on the underside of the device.

3.7 Protection Circuit

External loads must be equipped with a suitable protection circuit for the load (e.g. RC elements, varistors, suppressors) in order to reduce EMC interference and to increase the service life of the output switching elements.

4 Application Examples

4.1 Zero speed monitor with incremental encoder (operating mode A-1)

Figure 12: Zero speed monitor with incremental encoder (operating mode A-1)

When the actual speed is less than the standstill speed, the lock maintained by spring force of the safety door is opened and the access to the machine during standstill can be automatic.

The machine cannot be restarted until the safety door is locked again.

4.2 Zero speed monitor with initiators (operating mode A-2)

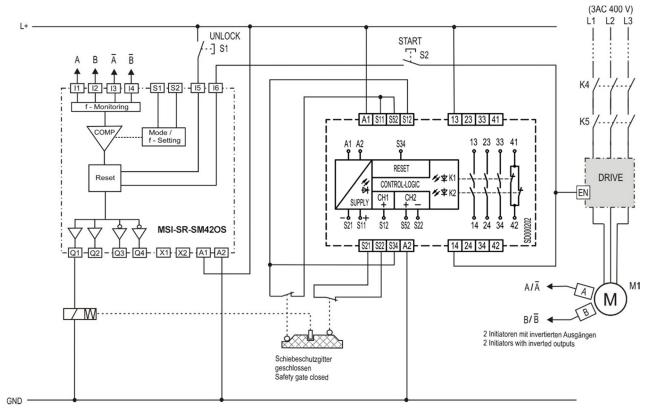


Figure 13: Zero speed monitor with initiators (operating mode A-2)

When the actual speed is less than the standstill speed, the lock maintained by spring force can be opened by pressing the button S1 and the safety door is automatically released during standstill. When the safety door is open, starting the machine is prevented by removing the enable for the drive controller.

The machine does not start until pressing the button S2 when the safety door is closed and locked again.

4.3 Zero speed monitor with initiators (operating mode B-1)

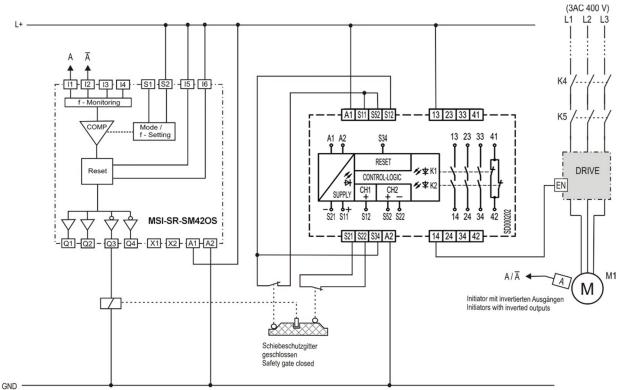


Figure 14: Zero speed monitor with initiators (operating mode B-1)

When the actual speed is less than the standstill speed, the magnetic lock is released automatically and the safety door is automatically opened during standstill. When the safety door is open, starting the machine is prevented by removing the enable for the drive controller.

The machine cannot be restarted until the safety door is closed and locked again.

4.4 Zero speed monitor with initiators (operating mode C-1)

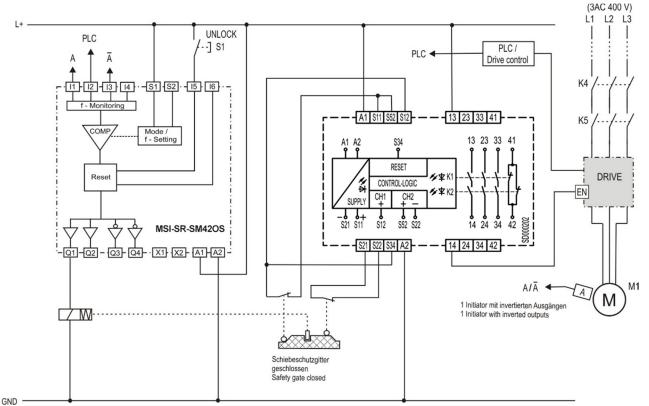


Figure 15: Zero speed monitor with initiators (operating mode C-1)

When the actual speed is less than the standstill speed, pressing the S1 button releases the spring force lock and opens the safety door during standstill, provided that the monitored frequency at inputs 11 and 13 are below the monitoring frequency, and a respective signal from the drive control is present at 12, indicating a standstill of the monitored drive. When the safety door is open, starting the machine is prevented by removing the enable for the drive controller.

The machine cannot be restarted until the safety door is closed and locked again.

5 Calculation Example

The following calculation example should provide assistance for the selection and adjustment of the sensors.

5.1 Determination of the number of pulses

The number of pulses Z of the sensor must be selected so that the sensor during operation of the machine at maximum speed n_g never exceed the maximum cutoff frequency of the device. In the equation, the maximum values for f_g (2000 Hz) and n_g are used:

- Z: Number of pulses per revolution
- **n**_g: Maximum speed of the drive (rpm)
- fg: Pulse frequency (1/sec)

 $Z = f_g * 60 / ng$

Example for a machine with a maximum speed of 1000 rpm:

The maximum number of pulses of the sensor must not exceed 120 pulses per revolution.

5.2 Determination of the cutoff frequency to be set

The speed limit f_{ST} to be set for the monitoring of the standstill is then determined as follows using the previously calculated number of pulses Z and the standstill speed n_{ST} to be monitored of the drive:

- **Z:** Number of pulses per revolution
- **n**st: Standstill speed of the drive (rpm)
- fst: Frequency to be set (1/sec)

Example for monitoring a speed of 3 rpm and a number of pulses of 120 per revolution:

$$f_{ST} = 6 Hz$$

The frequency to be set on the device for monitoring the standstill of the drive is 6 Hz.

6 Sensors

6.1 Incremental Encoders

Incremental sensors (IGR) are sensors for the measurement of position changes (linear) or angle changes (rotating) which can measure displacement and displacement direction or angle change and rotation direction. Incremental encoders are also called rotary encoders, incremental rotary encoders or rotary pulse generators.

The displacement or rotation to be measured for the incremental measurement is divided into equally sized elements (increments). These increments are then counted and the displacement or number of revolutions is produced from the sum of the increments.

6.2 Proximity Switches

Proximity switches, also called proximity initiators or proximity sensors, use sensors which react to proximity, i.e. without direct contact or non-contacting. Proximity switches are used during technical processes for the position detection of workpieces and tools and as initiators of safety measures. The sensors and switches for some proximity switches are combined in one component.

- Inductive Proximity Switches: These react to the occurrence of an eddy current both for ferromagnetic as well as non-magnetic but metallic objects.
- Capacitive Proximity Switches: These react to non-conductive materials.
- Magnetic Proximity Switches (e.g. reed switches or also Hall sensors): These react to a magnetic field.
- Optical Proximity Switches: These react to light reflection.
- Light Barrier: Light barriers evaluate the interruption of a light beam.
- Ultrasound: These proximity switches evaluate the reflection of an ultrasound signal from an obstacle.
- Electromagnetic proximity switches where proximity changes the oscillation frequency of oscillating circuits. They react to both conductive as well as non-conductive materials.

7 Technical Data

Climatic conditions	Unit	
Ambient operating temperature T _B	°C	-25 to +55
Storage temperature	°C	-25 to +70
Relative humidity	%	10 to 95, no moisture condensation
Climatic Conditions (EN 61131-2)	hPa	860 to 1060
Air pressure in operation		
Mechanical strength		
Vibration, sine (EN 60068-2-6)		
Frequency range	Hz	5 to 150
Amplitude	mm	3.5 (5 to < 9 Hz)
Acceleration	g	1(9 to 150 Hz)
Number of cycles		10 per axis (on 3 axes)
Vibration, broadband noise (EN 60068-2-64)		
Frequency range	Hz	5 to 500
Acceleration	g	4.9
Shocks, half sine (EN 60068-2-27)		
Acceleration	g	15
Duration	ms	11
Electrical safety		
Protection class (EN 60529)		IP 20
Finger-proof according to DIN EN 50274		
Air gap/creepage paths (EN 60664-1)		
Surge voltage category		Ш
Degree of soiling		2 inside, 3 outside
Test voltage alternating current	kV	see EN 60664-1
Operating voltage	V AC	300

Electromagnetic Compatibility	Unit					
Fast Transients (Burst) according to EN 61000-4-4						
Power Supply	kV	2				
• I/O	kV	1				
Functional Earth (Shield)	kV	1				
High energy surge voltages (Surge)						
according to EN 61000-4-5		DiffMode	(Com.	-Mode	
Power Supply	kV / kV	1.0	2	2.0		
• I/O	kV / kV	1.0	2	2.0		
Functional Earth (Shield)	kV	-	-	1.0		
Communication (field bus)	kV / kV	-		1.0		
High-frequency electromagnetic fields according to EN 61000-4-3	V/m	10				
Induced conducted interference according to EN 61000-4-6	V	10				
Electrostatic discharge according to EN 61000-4-2	kV	± 4 (contact	t discha	arge)		
		± 8 (air disc	harge))		
Interference emission according to DIN EN 55011:2003 Class A	db (V/m)	40 (20 - 230 MHz) 47 (230 - 1000 MHz)				
Short power failures						
according to EN 61000-4-29						
Duration	ms	10	10			
• U / U _{Nenn}	%	85	85			
Cycles		20	3			
Test frequency	Hz	1	0,1			
Voltage variation, shutdown/start-up according to EN 61000-4-29		24 V	19.2 '	V	30 V	
Switch-on time	S	60	10		5	
Dwell time	S	10	10		0	
Switch-off time	S	60	10		5	
Interval	Hz	0.1	0.1		0.1	
Cycles		3	3		3	
Voltage variation						
Start value (U / U _{Nenn})	%	100	80			
End value (U / U _{Nenn})	%	0	100			
Time1, (Start-End)	s	5	60			
Dwell time	s	0	0			
Time2, (End-Start)	s	5	60			
Cycles		3	3			

Mechanical elements and assembly		
Case material		Polycarbonate
Case type		NGS device for switch cabinet installation
Dimensions drawing		See Fehler! Verweisquelle konnte nicht gefunden werden.
Case width	mm	22.5
Protection class		
• Case		IP 40
Terminals		IP 20
Colour		yellow / light grey
Terminals		Pluggable screw terminals
		Pluggable spring-loaded terminals
Mounting rail		DIN rail according to EN 50022-35

General Data	Unit			
Function indicator		11	LED	green
		1	LED	red
Controls		2	Switch	10-stage
adjustable frequency ranges 0.19.9 Hz	Hz	01 - 99 (0	0=0.1)	
0.599 Hz	Hz	01 - 99 (00=0.5)		
Weight	kg		0.16	
Duty cycle ENTER button ter	s	3		
Electrical isolation				
Power circuit - input circuit			no	
Power circuit - output circuit			no	
Input circuit - output circuit			no	
Power circuit (A1, A2)		Min.	Туре	Max.
Operating voltage U _B , DC	V	19.2	24	30.0
Residual ripple	Vss			3.0
Rated power, DC	W		2.5	3.0
Peak current I _P	Α			25
Ready time (after applying U _B) 5s + t _{ON}	S		1/ f s⊤	1.8/fs⊤
Device fuse	А		4 (gG)	
Power supply requirements		Class II, UL 60950-1		
Input circuit (I5, I6, S1, S2)		Min.	Туре	Max.
Input voltage, U _e (HIGH)	V	13.0		30
U _e (LOW)	V	- 5.0		5.0
Input current, I _e (HIGH)	mA	2.4		3.8
I _e (LOW)	mA	- 2.5		2.1
Input capacitance, C _{IN}	nF	8	10	12
Input resistance, R _{IN}	Ω		7,200	
Duty cycle, t _E	ms	52		70
Break time, t _A	ms	52		70
Actuating time at I5 and I6 for manual Reset	S	0.1		5
Interruption time of UE (test pulses)	ms			4
Period duration of the interruption time	ms	192		
Safety related characteristics				
SIL (IEC 61508)		3		
SILcl (EN 62061)		3		
PL (EN ISO 13849-1)		е		
PFDd		2.2 x 10 ⁻⁵		
PFHd	h-1	5 x 10 ⁻⁹		
SFF	%	98		
DC	%	96		
Average ambient temperature	°C	40		
Service life	years	20		

Input circuit (I1, I2, I3, I4)		Min.	Туре	Max.
Input voltage, Ue (HIGH)	V	13.0		30
U _e (LOW)	V	- 5.0		5.0
Input current, I _e (HIGH)	mA	2.4		3.8
le (LOW)	mA	- 2.5		2.1
Input capacitance, C _{IN}	nF	8	10	12
Input resistance, R _{IN}	Ω		7,200	
Cutoff frequency fg (duty cycle 3:2)	kHz			2.0
Frequency change	kHz/s			21
Measurement accuracy of the frequency measurement	%	1% (<1Hz)	6% (<50Hz)	12% (≤99Hz)
LOW level (for f < 100 Hz)	μs	600		
HIGH level (for f < 100 Hz)	μs	600		
LOW level (for 100 Hz < f < 2 kHz)	μs	200		
HIGH level (for 100 Hz < f < 2 kHz)	μs	200		

Output circuit (X1, X2)		Min.	Туре	Max.
Output voltage	V	18.0		30
Output current	mA			150
Ready time (after applying U_B)	s			4
Load capacitance, C∟	nF			1000
Load resistance R∟	Ω			100
Line length (single, \varnothing 1.5 mm ²)	m			100
Short-circuit behaviour		strictly short-circuit protecte		
Output circuit (Q1, Q2, Q3, Q4)		Min.	Туре	Max.
Output voltage	V	18.4		30.0
Output current I_{Qn} , $T_U \le 45 \text{ °C}$	А		1.6	2.0
Output current I_{Qn} , $T_U \le 55 \ ^\circ C$				1.6
Total current I_{Qn} , $T_U \le 45 \text{ °C}$	А			4.0
Total current I_{Qn} , $T_U \le 55 \text{ °C}$				3.2
Test pulse width, tтι,н∟	μs		400	650
Test pulse period duration Q1, tPI,HL	ms	44		80
Test pulse period duration Q2, tPI,HL	ms	40		80
Test pulse period duration Q3, tPI,HL	ms	36		80
Test pulse period duration Q4, tPI,HL	ms	32		80
Load capacitance, CL	nF			500
Inductive cutoff energy, E=0.5*L*I	mJ			370
Line length (single, \emptyset 1.5 mm ²)	m			100
Short-circuit behaviour		strictly short-circuit pro		protected
Input test (internal)				Max.
Test pulse width¹ (t _{TI})	μs		200	
Test duration (t _{TD})	μs		200	
Test pulse period duration (trp)	ms		192	
Response time ($t_{AN} = t_{AN1} + t_{AN2}$) for overspeed		Min.	Туре	Max.
t _{AN1}	ms	8		12
t_{AN2} for standstill frequency (fst) 0.1 Hz - 99 Hz				
for duty cycle (3:2)	S	1 / f _{st}		1.6 / f _{st}
for duty cycle (1:1)	S	1 / f _{st}		1.8 / f _{st}
Error detection time		Min.	Туре	Max.
Short circuit to U _B , GND (I1,I2,I3,I4)				
 sensors with inverted outputs 	ms	52		116
sensors with duty cycle 3:2 (operating mode B-2)		52 ms		3/f
Short circuit to U_B (internal input)	ms			576
Short circuit to U _B (output)	ms			576
Error in the power supply	ms			576

¹ Signal changes are not detected for the duration of the test pulse.