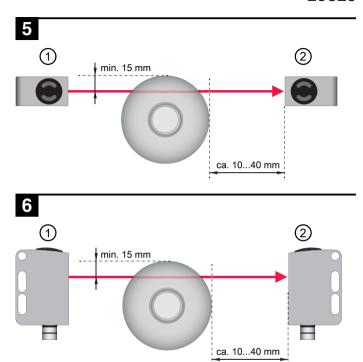

Fotocellula a sbarramento per il rilevamento di liquidi acquosi


LS55C.H2O

We reserve the right to make changes - 2022/10/07 - 50144129

Note sul funzionamento della fotocellula

- Le etichette e i liquidi colorati aumentano l'attenuazione.
- La riserva di funzionamento può essere adattata sul trasmettitore (pin 2 + pin 4).
- Una riduzione della riserva di funzionamento può accadere in seguito all'errore di posizionamento del ricevitore.

Regolazione della sensibilità sul trasmettitore

Per un rilevamento affidabile di liquidi acquosi in contenitori di vetro e plastica (bottiglie, siringhe, vaschette, ecc.), occorre adattare la sensibilità sul trasmettitore all'ambiente di misura.

Suggerimento per la regolazione della sensibilità sul trasmettitore

Trasmettitore IN1	Trasmettitore IN2	Sensibilità	Distanza tra- smettitore - ri- cevitore 1)	Formati ^{2) 3)} (volume del recipiente, chiaro colorato)
Senza carico o 0 V	U _B	Livello 1 (min.)	50 100 mm	<0,5 I, senza etichetta
Senza carico o 0 V	Senza carico o 0 V	Livello 2 (de- fault)	100 500 mm	0,1 2 I, senza etichetta
U _B	U _B	Livello 3	100 500 mm	0,1 5 l, senza etichetta
U _B	Senza carico o 0 V	Livello 4 (ma- x.)	100 500 mm	0,1 5 l, con etichetta 4)

¹⁾ Ulteriore riduzione della sensibilità in seguito a errore di posizionamento del ricevitore

Disegno quotato

Tutte le dimensioni in mm

A Asse ottico

B Diodi indicatori

²⁾ Dati tipici, forte variabilità a seconda del colore del contenitore e del diametro della colonna d'acqua

³⁾ Ulteriori contenitori e pellicole a seconda del materiale e della distanza dal sensore

Etichette di plastica, anche stampate

Rilevamento di liquidi acquosi in contenitori di vetro e plastica (bottiglie, siringhe, vassoi ecc.)

Regolazione e scelta della sensibilità

Vale per il trasmettitore LS55C.H2O... in combinazione con il ricevitore LE55C.H2O....

- 1 Trasmettitore
- 2 Ricevitore
- 3 Max. 2/3 x distanza trasmettitore ricevitore
- ♥ Montare il trasmettitore e il ricevitore.
 - Prevedere una possibilità di inclinazione del ricevitore compresa tra 0° ... 15°.
 - Le bottiglie non devono essere rilevate direttamente davanti al ricevitore. Osservare la distanza di montaggio raccomandata.
- Allineare l'asse ottico con precisione.
- Regolare approssimativamente la sensibilità sul trasmettitore conformemente alla tabella di sensibilità.

Regolazione di massima della sensibilità

- 1 Trasmettitore
- 2 Ricevitore
- 3 Regolazione sul trasmettitore tramite IN1 e IN2 conformemente alla tabella di sensibilità
- Verificare che una bottiglia vuota non comporti alcuna interruzione. In caso di interruzione: aumentare la sensibilità sul trasmettitore IN1/IN2 oppure ridurre la distanza tra il trasmettitore e il ricevitore.
- Verificare che una bottiglia pieni comporti continuamente un'interruzione. In caso contrario: ridurre la sensibilità sul trasmettitore IN1/IN2 e/o effettuare una regolazione di precisione mediante l'angolo di inclinazione.

4

- 1 Trasmettitore
- 2 Ricevitore
- 3 Regolazione di precisione mediante l'angolo di inclinazione: angolo di inclinazione 0° ... ±15°, 15° = sensibilità ridotta

Controllo dell'altezza di riempimento in contenitori in vetro e plastica

Vale per il trasmettitore LS55C.H2O... in combinazione con il ricevitore LE55C.H2O**X**....

La fotocellula può essere utilizzata per determinare altezze di riempimento durante l'imbottigliamento di contenitori con bevande (ad es. acqua, succhi di frutta, birra, vino, latte) o soluzioni acquose (ad es. detergenti, acidi, basi, alcool).

Regolazione della sensibilità sul trasmettitore

Di norma non è necessario regolare il trasmettitore, ossia gli ingressi IN1 e IN2 sul trasmettitore rimangono non collegati. Se il sensore non genera alcun segnale di commutazione con questa impostazione, è necessario ridurre la potenza di trasmissione al livello 1 (min.) secondo la tabella «Suggerimento per la regolazione della sensibilità sul trasmettitore».

Avviso per la corretta regolazione della fotocellula

In linea di principio, trasmettitore e ricevitore possono essere posti a una distanza a piacere dal contenitore. Se fattibile, si consiglia una distanza di 10 ... 40 mm.

Disposizione verticale dei sensori (vista dall'alto sulla bottiglia / Top View)

- Trasmettitore
- 2 Ricevitore

Disposizione orizzontale dei sensori (vista dall'alto sulla bottiglia / Top View)

- 1 Trasmettitore
- 2 Ricevitore

IT

Leuze

- L'asse ottico di trasmettitore e ricevitore deve essere allineato esattamente sia in orizzontale sia in verticale. La posizione dell'asse ottico è riportata sul disegno quotato.
- Nella posizione in cui deve essere controllata l'altezza di riempimento il raggio di luce non deve puntare attraverso il getto di riempimento.
- L'asse ottico deve passare attraverso la bottiglia a una distanza di almeno 15 mm dalla parete esterna del contenitore.
 Il controllo dell'altezza di riempimento è in larga misura indipendente dalla
- geometria della bottiglia, dallo spessore o dal colore. Se la superficie del liquido è liscia e piana durante il processo di riempimento, si ottiene un'ottima riproducibilità tipicamente di 0,2 ... 0,5 mm. All'aumentare dell'ondulazione o della turbolenza della superficie del liquido durante il processo di riempimento si riduce la riproducibilità. Non è possibile fornire dati generali al riguardo, dovendo questi essere determinati mediante prove pratiche.