Leuze electronic

the sensor people

MSI 100/200

Configurable safety modules and safe extension modules

USER MANUAL

▲ Leuze electronic

© 2018

Leuze electronic GmbH + Co. KG In der Braike 1 D-73277 Owen / Germany Phone: +49 7021 573-0 Fax: +49 7021 573-199 http://www.leuze.com info@leuze.de

User Manual

MSI 100/200: Configurable safety modules and safe extension modules

UM MSI 100/200, Revision 01

2018-02-01

This user manual is valid for:

	Designation	Revision from HW/FW	Part no.
MSI 100	MSI101	10/1636	547802
	MSI102	10/1636	547812
MSI 200	MSI201	10/2033	547803
	MSI202	10/2033	547813
MSI-EM200-8I4IO	MSI-EM201-8I4IO	10/1021	547804
	MSI-EM202-8141O	10/1021	547814
MSI-EM200-4RO	MSI-EM201-4RO	02/1002	547805
	MSI-EM202-4RO	02/1002	547815

The following designations are used in this manual:

Safety modules:

designation for modules MSI 100 and MSI 200

Safe extension modules:

designation for modules MSI-EM200-8I4IO and MSI-EM200-4RO

Table of contents

1	For your safety			7
		1.1	Labeling of the warning notices	7
		1.2	Qualification of the users	7
		1.3	Range of application of the product	8
			1.3.1 Intended use	8
			1.3.2 Changes to the product	9
		1.4	Safety notices	9
			1.4.1 General safety notices	9
			1.4.2 Electrical safety	11
			1.4.3 Safety of machines or systems	12
		15	Directives and standards	13
		1.0		13
		1.0		14
		1.7		14
2	System description			15
		2.1	MSI 100/200 safety system: design and functionality	15
		2.2	Using the system	18
		2.3	Safe state	19
		2.4	System start-up and restart behavior	19
		2.5	Error detection	21
		2.6	Error state	21
		2.7	Diagnostic tools	22
		2.8	Password protection	22
3	MSI 100 and MSI 20	00 safe	etv modules	23
Ŭ		3 1		20
		0.1	3.1.1 Connection of extension devices	25
		3.2	Operating modes (status) of the safety modules	26
		3.3	Operating and indication elements	27
			3.3.1 Diagnostic and status indicators	27
			3.3.2 Confirm button	28
			3.3.3 USB interface	28
			3.3.4 AC-MSI-CFG1	30
		3.4	Signal connections	31
			3.4.1 Safe inputs	31
			3.4.2 Safe outputs	32
			3.4.3 Signal outputs	33
			3.4.5 Ground-switching outputs	33 34
			3.4.6 Supply connections	34
4	MSI-EM200-8141O s	safe ex	tension module	36
		4.1	Product description	36
		4.2	Diagnostic and status indicators	37
		4.3	Signal connections	38
			4.3.1 Sate inputs	38
				JÖ

			4.3.3	Clock/signal outputs	39
			4.5.4		41
5	MSI-EM200-4RO sa	fe exte	ension r	nodule	42
		5.1	Produc	t description	42
		5.2	Diagno	stic and status indicators	44
		5.3	Signal o	connections	45
			5.3.1	Safe relay outputs	45
			5.3.2	Signal outputs	47
			5.3.3	Supply connections	47
6	Wiring examples				49
		6.1	Informa	tion on the wiring examples	49
		6.2	Single-	channel assignment of the safe digital inputs	49
			6.2.1	Cross circuit monitoring switched on	49
			6.2.2	Cross circuit monitoring switched off, external supply	50
		0.0	0.2.5		51
		6.3	I wo-ch	annel equivalent assignment of the safe digital inputs	52
			632	Cross circuit monitoring switched off, external supply	52 53
			6.3.3	External supply (OSSD)	54
		6.4	Two-ch	annel antivalent assignment of the safe digital inputs	55
		•••	6.4.1	Cross circuit monitoring switched on, supplied by T0 and T1	55
			6.4.2	Cross circuit monitoring switched off, external supply	56
		6.5	Safe di	gital outputs	57
			6.5.1	Information on the protective circuitry of external relays/contactors	
				(freewheeling circuit)	57
			6.5.2	Single-channel assignment of the safe digital outputs	58
			0.5.3		59
		6.6	Sate re	lay outputs	60
			0.0.1	(freewheeling circuit)	60
			6.6.2	Single-channel assignment of the safe relay outputs	60
			6.6.3	Single-channel assignment of the safe relay outputs	61
7	Mounting, removal a	nd ele	ctrical i	ostallation	62
	mounting, romovara	7 1	Safetyu	notices for mounting, removal and electrical installation	62
		7.1	Mountir		63
		1.2	721	Mounting instructions	03 63
			7.2.2	Mounting location	63
			7.2.3	Mounting	64
		7.3	Remov	al	65
		7.4	Electric	al installation	66
			7.4.1	Connecting signal lines	67
			7.4.2	Connecting the supply voltage	69
			7.4.3	Example connection of an MSI 100/200 system	72
8	Firmware update				73
		8.1	Safetv	notices for the firmware update	73
		8.2	Require	ement for firmware update	74
		83	Runnin	n a firmware undate	74
		0.0	TURNIN	g a minimare upuale	/ 4

9	MSIsafesoft configu	ration	software	75
		9.1	Installing software	75
		9.2	Opening the software help system	76
10	Configuration and co	ommis	sioning	77
		10.1	Example for configuration and commissioning	77
		10.2	Downloading configuration from the MSIsafesoft configuration software	80
		10.3	Loading the configuration using the AC-MSI-CFG1 memory module	84
		10.4	Uploading the configuration from the safety module	86
		10.5	Function Test 10.5.1 Performing function test with the help of online mode	87 87
11	Diagnosis			89
	U	11.1	Diagnosis via LED indicators on the module	89
			11.1.1 MSI 100 and MSI 200	90
			11.1.2 MSI-EM200-8I4IO	93
			11.1.3 MSI-EM200-4RO	94
12	Problems and soluti	ons		95
		12.1	General	95
		12.2	Graphical connection editor	96
		12.3	Configuration editor	96
		12.4	Online communication between MSIsafesoft and the safety module	97
		12.5	Communication between the safety module and the safe extension module	: 99
		12.6	Safety module messages	99
13	Maintenance, repair	, deco	mmissioning and disposal	100
		13.1	Maintenance	100
		13.2	Repair	100
		13.3	Decommissioning and disposal	100
14	Technical data and	orderir	ig data	101
		14.1	Technical data MSI 100 and MSI 200	101
		14.2	Technical data MSI-EM200-8I4IO	107
		14.3	Technical data MSI-EM200-4RO	112
		14.4	Certifications	117
		14.5	Conformity with EMC directive	117
		14.6	System requirements for the MSIsafesoft configuration software	117
		14.7	Ordering data	118
			14.7.1 MSI 100/200 modules	118
			14.7.2 Software	118
			14.7.4 Gateways	118
		14.8	Documentation	119
A	Technical appendix			120
		A 1	Calculation of the power loss	120
		A 2	Switch-off time of the MSI 100/200 system	124
		A 3	Use of MSI 100/200 modules at altitudes above 2000 m above sea level	125

▲ Leuze electronic

В	List of appendices			127
		B.1	Figures	127
		B.2	Tables	130
		B.3	Index	132
C Re	Revision history			135

1 For your safety

Read this manual thoroughly and store it for future reference.

1.1 Labeling of the warning notices

This is the safety alert symbol. It is used to alert you to potential personal injury hazards.

There are three signal words for the severity of the possible injury.

DANGER

This indicates a danger with high degree of risk. If the danger is not avoided, it will result in death or a severe injury.

WARNING

This indicates a danger with moderate degree of risk. If the danger is not avoided, it may result in death or a severe injury.

CAUTION

This indicates a danger with low degree of risk. If the danger is not avoided, it may result in a minor or moderate injury.

This icon with the **ATTENTION** signal word warns of actions that could result in property damage or a malfunction.

Here, you can find additional information or other sources of information.

1.2 Qualification of the users

The use of products described in this manual is oriented exclusively to

- Certified electricians or persons instructed by certified electricians. The users must be familiar with the relevant safety concepts of automation technology as well as with the applicable standards and other regulations.
- Qualified application programmers and software engineers. The users must be familiar with the relevant safety concepts of automation technology as well as with the applicable standards and other regulations.

1.3 Range of application of the product

Only use the MSI 100/200 system in accordance with the range of application described in this chapter.

1.3.1 Intended use

Only use the safety modules and safe extension modules of the MSI 100/200 system according to the information provided in this section. MSI 100/200 system The intended use of the MSI 100/200 system is safe shutdowns. Safe switch-on is not an intended use. All modules of the MSI 100/200 system are intended for use in the industrial sector. The safety modules and safe extension modules can only perform their safety-relevant tasks if they have been integrated in the execution process correctly and in such a way as to avoid errors You must observe all information in this user manual as well as in the user manuals and online help listed in "Documentation" on page 14. Only use the modules of the MSI 100/200 system according to the provided technical data. See chapter 14 "Technical data and ordering data" from page 101. You can find further information on the use of the MSI 100/200 system under "Using the system" on page 18. MSI 100 and The MSI 100 and MSI 200 modules are configurable safety modules with 20 safe inputs and **MSI 200** four safe outputs. The inputs are used for the evaluation of safety-relevant transducers, such as E-Stop buttons or safety doors. The circuits are interrupted in a safe manner via the outputs. In addition, four signal outputs, two clock outputs and two ground-switching outputs are available. The MSI 100 safety module is a stand-alone device and cannot be extended with safe extension modules. The MSI 200 safety module can be extended with safe inputs and outputs using safe extension modules of the MSI 100/200 system. You can connect one gateway to both safety modules for transferring diagnostic data. MSI-EM200-8141O The MSI-EM200-8I4IO safe extension module is an extension to the MSI 200 safety module. An additional four configurable inputs or outputs, two configurable clock or signal outputs as well as eight safe inputs are thereby made available. MSI-EM200-4RO The MSI-EM200-4RO safe extension module is an extension to the MSI 200 safety module. An additional four safe relay outputs and four signal outputs are thereby made available.

MSIsafesoft

Safe function blocks and functions in MSIsafesoft

The MSIsafesoft safe configuration software is designed for the configuration of the safety modules as well as connected extension modules.

The MSIsafesoft configuration software provides safe function blocks and functions for creating the safety logic. These are designed solely for use within the safety module and support specific safety functions here.

The safe function blocks and functions can only perform their safety-related tasks within the safe control system if they have been integrated into the execution process correctly and in such a way as to avoid errors.

1.3.2 Changes to the product

Modifications to the hardware and firmware of the device are not permitted.

Improper work or changes to the device could endanger your safety or damage the device. You may not repair the device. If the device is defective, contact Leuze electronic.

1.4 Safety notices

1.4.1 General safety notices

Depending on the application, improper use of the MSI 100/200 system can place the user in serious danger.

Observe the safety notices in this chapter.

WARNING: Serious danger through improper use

Observe the warning notices at other locations in this document.

Documentation

You must observe all information in this manual and other applicable documents. See chapter "Documentation" on page 14.

Safety of personnel and equipment

The safety of personnel and equipment can only be assured if the modules and safe function blocks are used correctly.

See chapter "Intended use" on page 8.

Qualified personnel	 Qualified personnel are, in the context of this manual, persons who, because of their education, experience, and instruction, and their knowledge of relevant standards, regulations, accident prevention, and service conditions, have been authorized to carry out any required operations, and who are able to recognize and avoid any possible dangers. In the context of the use of the MSI 100/200 system with the MSIsafesoft configuration software and safe function blocks, the following operations may only be carried out by qualified personnel: Planning, configuration (development of safety logic) Installation, commissioning, servicing Maintenance, decommissioning 	
Requirements	 Knowledge of the following topics and products is required: The safety and safe extension modules used in the MSI 100/200 system The used peripherals (extension devices, sensors, actuators) Operating the MSIsafesoft configuration software Standards of safety technology Safety regulations in the area of application 	
Error detection	Depending on the wiring and the configuration, the safety modules and safe extension modules of the MSI 100/200 system detect errors within the safety-related equipment.	
Do not open the housing	It is prohibited to open the housing of the modules. If the housing is opened, the function of the MSI 100/200 modules is no longer guaranteed.	
Misconnection and incor- rect polarity of the connec- tions	Take measures to protect against misconnection, polarity reversal and tampering at the con- nections. The individual terminal blocks of all MSI 100/200 modules are mechanically coded to prevent	

1.4.2

Electrical safety

\wedge	WARNING: Loss of the safety function / hazardous body currents
	Incorrect installation can result in loss of the safety function as well as in hazardous body
	currents. Depending on the application, the user may be exposed to severe dangers.
	Observe the notices for electrical safety.
	Observe the warning notices at other locations in this document.
	 Dimension the used devices and design their installation in the system according to the
	specific requirements.
	 Retest the equipment and systems that are retrofitted with the safety relay.
	Observe the information in the user documentation for other used devices
	(e.g., sensors, actuators or extension devices).
Direct / indirect contact	Protection against direct and indirect contact according to VDE 100 part 410 must be ensured
	for all components connected to the system. In the event of an error, no hazardous parasitic
	voltages may occur (single-fault tolerance).
	Mandatory measures:
	 Use power supply units with safe insulation (PELV)
	 Decoupling of circuits that are not PELV systems
	With the following components: optical couplers, relays or other components that satisfy
	the requirements for safe insulation
Safe insulation	Only use devices with safe insulation if hazardous contact voltages can occur at their connec-
	tions.
Power supply units for	Only use power supply units with safe insulation and PELV in accordance with EN 50178 /
24-V supply	VDE 0160. These units prevent short circuits between primary and secondary sides.
	Connect the output-side GND connection of the power supply unit to the functional earth (EE)
	of the system.
Ground connection	Ensure that all inputs and outputs of the system are connected to the same ground.
· · · · · · · · · · · · · · · · · · ·	
Insulation dimensioning	When selecting the equipment, take into account the contamination and overvoltages that
Installation space and	Observe the requirements listed in the technical data regarding the installation space and the
installation position	installation position.
ESD note	
▲	ATTENTION: Electrostatio discharge

ATTENTION: Electrostatic discharge

Electrostatic discharge can damage or destroy components. When handling, take the necessary safety precautions against electrostatic discharge (ESD) according to EN 61340-5-1 and IEC 61340-5-1.

	1.4.3	Safety of machines or systems
	The safety used is the	of the machine or system and of the application in which the machine or system is responsibility of the machine/system manufacturer and of the operating company.
Draw up and implement a safety concept	In order to you must h includes th listed in ch	use the system described in this document with the associated safe function blocks, nave drawn up an appropriate safety concept for your machine or system. This hazard and risk analysis, among others, according to the directives and standards apter "Directives and standards" on page 13.
	The target – SIL ac – SILCL – Cat./P	safety integrity level is ascertained on the basis of the risk analysis. cc. to IEC 61508 . acc. to EN 62061 /L acc. to EN ISO 13849-1
	The follow – The w	ing are dependent on the ascertained safety integrity: iring of safe sensors, command devices and actuators within the overall safety func-
	– The us The sa	se of safe function blocks in the safety logic. afety logic is created using the MSIsafesoft configuration software.
Safety-related equipment	For the ser	nsible use of the MSI 100/200 system, provide the machine with safety-related
	This incluc – E-Stop – Protec – Enabli – Light t	les, for example: o buttons otion hood switches ing switches parriers
Testing hardware and con- figuration	Carry out a tem.	a validation every time you make a safety-related modification to your overall sys-
	Use the re "Project In	levant checklists when carrying out the validation. Enter the details requested in the formation" dialog box in the MSIsafesoft safe configuration software.
	Use your t	est report to satisfy yourself that:
	 The sation cation ware. 	afe sensors and actuators are connected correctly in the MSI 100/200 safety appli- . To do this, use the "Wiring check" function in the MSIsafesoft configuration soft-
	 The in rectly 	puts and outputs of the safety modules and the safe extension modules are cor- configured.
	 The si chann 	gnals have been connected to the safe sensors and actuators correctly (single- el or two-channel).
	– Cross	-circuit detection is implemented in your application, if required (see page 22).
	 All saf nected 	e function blocks and functions in the MSIsafesoft configuration software are con-

Disconnecting the USB
connectionFor the safe operation of the machine or system, there must be no USB connection to the
safety modules.

For further information, refer to Chapter "USB interface" on page 28.

1.4.4 Safety when starting applications

Take the following into account when defining the start conditions for your machine or system:

- The machine or system may only be started if it is ensured that no persons are located in the danger zone.
- Comply with the requirements of EN ISO 13849-1 with regard to the manual reset function.

This applies for:

- The switching on of safe participants
- The acknowledgment of device error messages
- The canceling of start interlocks for safety functions

Observe start-up behavior Some of the safe function blocks in the MSIsafesoft configuration software have parameters for specifying a start interlock and/or a restart interlock.

For further information, refer to Chapter "System start-up and restart behavior" on page 19.

1.5 Directives and standards

The standards with which the MSI 100/200 system complies can be found in the certificate of the approval body and the EC Declaration of Conformity.

You can find these documents on the Internet. See <u>www.leuze.com</u>.

1.6 Documentation

Latest documentation

Always use the latest documentation. You can find changes or additions on the Internet. See <u>www.leuze.com</u>.

You must observe all information from the following sources:

- Technical description of the safety modules
- Technical description of the safe extension modules
- User documentation for peripheral devices (e.g., sensors/actuators) that are connected to the MSI 100/200 modules and are connected to safe function blocks in the safety logic (MSIsafesoft configuration software)
- Documentation for the supplementary standard technology
- Help system for the MSIsafesoft safe configuration software and for each of the safe function blocks (see "Opening the software help system" on page 76)

1

Additional information and detailed step-by-step instructions for the MSIsafesoft configuration software can be found in the help system of the software.

1.7 Safety hotline

If you have technical questions, please use our 24-hour hotline.

Phone:	+49 7021 573-123
E-mail:	service.protect@leuze.de

2 System description

2.1 MSI 100/200 safety system: design and functionality

Overall system: Hardware and software The MSI 100/200 safety system consists of the following components:

When using the MSI 100 safety module:

- MSI 100 safety module
- MSIsafesoft configuration software
- Safe command devices, sensors, and actuators (depending on the application)

When using the MSI 200 safety module:

- MSI 200 safety module
- Optional safe extension modules MSI-EM200-8I4IO / MSI-EM200-4RO
- MSIsafesoft configuration software
- Safe command devices, sensors, and actuators (depending on the application)

The diagram below illustrates the overall system in an application example with the MSI 200.

Communication via USB

Communication between the MSI 100 or MSI 200 safety modules and the configuration software takes place via a USB interface.

WARNING: Non-safe operation

The USB interface is not protected against ESD. If a there is a USB connection in place, the safety module is in non-safe operation. The safety function cannot be properly executed.

- Only use the USB connection for commissioning.
- Disconnect the USB connection for regular operation.

Communication between the safety module and the configuration software on the PC takes place in both directions:

$\textbf{PC} \rightarrow \textbf{safety module}$

The configuration data and device parameters are downloaded from the configuration PC to the safety module. Configuration data refers to the application logic, which you created using the MSIsafesoft configuration software.

The configuration can also be downloaded using the AC-MSI-CFG1 pluggable memory module. Please refer to "Downloading configuration from the MSIsafesoft configuration software" on page 80 and "Loading the configuration using the AC-MSI-CFG1 memory module" on page 84.

Safety module \rightarrow PC

For diagnostic purposes, online values can be read from the safety module via the USB interface and displayed "live" in the software. For more detailed information, please refer to "Function Test" on page 87.

Communication via the
DIN rail connectorThe MSI 100 safety module is equipped with an interface for the yellow MSI-TBUS DIN rail
connector. The MSI 200 safety module is equipped with two interfaces for the yellow
MSI-TBUS.

In combination with the green TBUS DIN rail connector, connect a maximum of one non-safe extension device (gateway) to the MSI 100 or MSI 200 safety module.

Use additional yellow MSI-TBUS DIN rail connectors to connect up to ten safe extension modules to the MSI 200 safety module.

Other standard bus participants are possible. For further information, refer to the user documentation of the used gateway at <u>www.leuze.com</u>.

Communication between the safe modules and the non-safe or safe extension modules takes place automatically via the connectors of the DIN rail connectors. See also chapter "Mounting" on page 63.

i

i

ATTENTION: Connector wear

The modules may be connected to the DIN rail connectors a maximum of eight mating cycles.

Note the maximum permissible continuous current for extension modules supplied via the MSI-TBUS as well as the technical data of the MSI 100/200 system. See Chapter "Technical data and ordering data" on page 101.

2.2 Using the system

Safety circuits

The safety modules of the MSI 100/200 system can be flexibly configured. For the creation of the safety logic, the system is equipped with safe function blocks. You can thereby use the MSI 100/200 system to implement various safety functions in different safety circuits. Just some of the most important options are listed below:

- E-Stop monitoring
- Safety door monitoring (with and without locking device)
- Two-hand control units (types II and III)
- External device monitoring (EDM)
- Monitoring and checking electro-sensitive protective equipment
- Operating mode selector switch (evaluation of an operating mode selector switch and an enabling switch)
- Muting applications (light grid monitoring with parallel muting)

Application examples:

In the help system of the MSIsafesoft configuration software, you can find application examples for the safe function blocks with typical application for each function block.

The safety logic configured in the configuration software as well as the wiring of the safety modules and the safe extension modules is displayed in the form of schematic views.

The online help also includes typical signal sequence diagrams, which illustrate the behavior of each function block.

The following application examples are included in the online help for the function blocks:

- Single-channel and two-channel E-Stop circuits
- Single-channel and two-channel safety door monitoring, with and without locking
- Operating mode selection with locking of the set operating mode and manual operating mode acknowledgment
- Evaluation of a three-position enabling switch with confirmation of the selected safe operating mode
- Parallel muting with two sensors
- Evaluation of a light curtain connected via a single channel
- Type II and type III two-hand control devices

2.3 Safe state

The safe state of an output terminal block is defined as the power off mode (signal value "0").

The safe state can be assumed by the MSI 100/200 system in the following cases:

- 1. Operating state (by triggering the safety function)
- 2. Error detection in the peripherals
- 3. Device error
- 4. Configuration error
- 5. Error detection in safe communication

2.4 System start-up and restart behavior

Start-up

WARNING: Unintended machine start-up

Start/restart after switching on voltage as well as the discontinued demand for the safety function can result in undesired machine start-up.

- Note the following:
 - The module starts up immediately after completing the configuration.
 - The module restarts immediately if the trigger of the safety function is reset.
- If automatic start/restart is not desired, configure automatic start/restart accordingly in the safety logic.

Start-up refers to the behavior of the MSI 100 and MSI 200 safety modules and the optional safe extension modules after switching on (or applying the supply voltage) and after configuring via USB interface or AC-MSI-CFG1.

Unless a start interlock is configured, the safety module starts up immediately following successful configuration (i.e., after pressing the "Confirm" button). The safe inputs are evaluated and the outputs controlled accordingly.

Restart Restart refers to the behavior of the safety modules and the optional safe extension modules after the safety function is triggered and the subsequent return to normal operation. Normal operation is restored, e.g., by unlocking the E-Stop command device, after which safe operation is again possible.

With an active start/restart interlock, the corresponding safe module output remains in the safe state. This prevents an undesired start/restart of a machine controlled by the relevant output.

Reset button

WARNING: Unintended machine start-up

Acknowledgment of an error results in the safe input or output being immediately returned to the operating state.

- Before acknowledging an error, make certain that acknowledgment cannot result in a dangerous machine state.
- When planning the machine or system, make certain that acknowledgment is possible only if the danger zone is visible.

1

i

In accordance with EN ISO 13849-1, the manual reset function must not trigger a machine start.

An active start/restart interlock can be released by actuating a reset button that is connected and appropriately wired to the safety module or to the safe extension modules.

The reset signal is used at the same time to exit the error state once the error cause has been removed.

Implementation using safe function blocks

To implement a start/restart interlock, use the safe function blocks in the MSIsafesoft configuration software which have the relevant parameters for activating the start/restart interlock.

To configure a start interlock for a specific safe output, for example, this output must be **directly** connected in the safety logic to the output of a safe function block, for which a start interlock is set via the parameters.

You can find further information on the implementation of a start/restart interlock in the help system of the MSIsafesoft configuration software.

2.5 Error detection

Depending on the wiring and the configuration, the safety modules and safe extension modules of the MSI 100/200 system detect the following errors at the safe inputs and outputs:

- Short circuit of the outputs
- Cross-circuit of the inputs or outputs
- Overload at the outputs

2.6 Error state

Stop category 1 only in the error-free state

•

ATTENTION: Property damage through immediate shutdown

The device ensures stop category 1 only in **error free** operation. If the supply voltage is lost or in the case of an internal error, the device behaves acc. to stop category 0.

Do **not** use the device in applications in which stop category 1 must be maintained even in case of failure.

Operating duration in faulty state

WARNING: Loss of the safe state in the error state

While in the error state, no module-internal tests run and, due to an accumulation of errors, the safe state may be exited.

• If the module takes on a faulty state, examine, acknowledge or rectify the error within 72 hours.

2.7 Diagnostic tools

MSIsafesoft diagnosis

Depending on the device, the modules of the MSI 100/200 system together with the MSIsafesoft configuration software provide various tools that can be used to diagnose the current configuration on the safety module:

- Hardware diagnosis in the event of a safe function block error
- Wiring check
- Tool tips in the connection editor
- Diagnostic and status indicators on the module
- Further diagnostic options via gateways

Information on hardware diagnosis, wiring checks and tool tips can be found in the help system of the MSIsafesoft configuration software.

Diagnostic and status indicators

i

Ť

_

An overview of the diagnosis and status displays of the individual modules can be found in the respective chapter.

- MSI 100 and MSI 200: see "Diagnostic and status indicators" on page 27.
 - MSI-EM200-8I4IO: see "Diagnostic and status indicators" on page 37.
- MSI-EM200-4RO: see "Diagnostic and status indicators" on page 44.

Diagnosis via gateways

You can connect your MSI 100/200 system with gateways to a primary control. The reading out of the diagnosis is bus-specific.

Information on diagnosis via gateways can be found in the respective user manuals of the gateway.

See <u>www.leuze.com</u>.

You can find suitable gateways for use with the MSI 100/200 system in the accessories chapter "Gateways" on page 118.

2.8 Password protection

i

The MSI 100/200 system and MSIsafesoft use two passwords to offer dual protection against unauthorized modifications to the configuration and the project in the configuration software.

You can find further information on password protection in the help system of the MSIsafesoft configuration software.

3 MSI 100 and MSI 200 safety modules

The MSI 100 and MSI 200 safety modules are, with respect to their functionality and basic design, largely identical.

i

Both of the safety modules are described together in this chapter.

Also note the additional information provided for the MSI 200 and the safe extension modules.

Difference between MSI 100 and MSI 200 The difference between the two safety modules lies in the following properties:

- MSIsafesoft diagnosis
- Connection option for safe extension modules of the MSI 100/200 system

3.1 Product description

Observe the technical data for the safety modules.

See "Technical data and ordering data" on page 101.

Safe digital inputs MSI 100 and MSI 200 are configurable safety modules with 20 safe digital inputs. The inputs are used to connect safe sensors or command devices. The maximum number of sensors/command devices is dependent on the wiring: Single-channel wiring: maximum 20 safe sensors/command devices Two-channel wiring: maximum 10 safe sensors/command devices Safe digital outputs The safety modules have four safe digital outputs. The outputs are actuated after evaluating the incoming signals according to the configuration. Ground-switching outputs The safety modules have two ground-switching outputs. The ground-switching outputs are used, for example, to switch off a contactor that is connected to the safety module. The contactor can be switched off here via either the safe 24 V output or via ground. Use of the groundswitching outputs increases the shutdown protection and cross-circuit protection of the safety circuit. **Digital signal outputs** The safety modules have four non-safe digital signal outputs. The signal outputs are used to control, e.g., a non-safe PLC or signal units. Safe clock outputs The safety modules have two clock outputs. The asynchronous test pulses enable safe cross-

Connection technologyThe safety modules are available with either screw connections or with spring-cage connec-

tions. All connection terminals are pluggable. The individual terminal blocks are mechanically coded to prevent swapping or skewed plug in.

Connection variants

-1 Screw terminals (left) and spring-cage terminals (right)

Block diagrams

MSI 100:

Figure 3-2

MSI 100 block diagram

MSI 200:

Figure 3-3

MSI 200 block diagram

Configuration

The configuration of the safety modules is created with the MSIsafesoft configuration software. You then load the configuration into the safety module via the USB interface.

WARNING: Non-safe operation

The USB interface is not protected against ESD. If a there is a USB connection in place, the safety module is in non-safe operation. The safety function cannot be properly executed.

- Only use the USB connection for commissioning.
- Disconnect the USB connection for regular operation.

Difference in MSIsafesoft

For the MSI 100 safety module, there are 16 external signals available in the MSIsafesoft configuration software.

For the MSI 200 safety module, there are 64 external signals available. The use of diagnostic addresses is also possible for function block diagnosis.

Further information on the MSIsafesoft configuration software can be found in Chapter "MSIsafesoft configuration software" on page 75 or the help system of the software.

3.1.1 Connection of extension devices

Also read "Communication via the DIN rail connector" on page 16.

Connection of non-safe extension devices (gateways):

Non-safe extension: MSI 100/200

Safe extension:

only MSI 200

i

You can connect a maximum of one gateway to both safety modules for transferring diagnostic data. Install the gateway to the left of the safety module.

Information on diagnosis via gateways can be found in the respective user manual of the gateway.

See <u>www.leuze.com</u>.

You can find suitable gateways for use with the MSI 100/200 system in the accessories chapter "Gateways" on page 118.

Connection of safe extension modules:

Only the MSI 200 safety module can be extended with the safe extension modules of the MSI 100/200 system. Install a maximum of ten safe extension modules to the right of the MSI 200 safety module.

i

Additional information on the safe extension modules can be found in chapters "MSI-EM200-8I4IO safe extension module" on page 36 and "MSI-EM200-4RO safe extension module" on page 42.

3.2 Operating modes (status) of the safety modules

The following diagram illustrates the possible operating modes (status) of the MSI 100 and MSI 200 safety modules as well as the possible status transitions. When there is a USB connection to the PC, the module status is indicated on the far right in the status line of the MSIsafesoft configuration software.

WARNING: Non-safe operation

The USB interface is not protected against ESD. If a there is a USB connection in place, the safety module is in non-safe operation. The safety function cannot be properly executed.

- Only use the USB connection for commissioning.
- Disconnect the USB connection for regular operation.

3.3 Operating and indication elements

All controls and indicators for the MSI 100 and MSI 200 safety modules are located on the front side of the device.

Figure 3-5 MSI 100/200 operating and display elements

3.3.1 Diagnostic and status indicators

Diagnostic indicators The four diagnostic indicators on the front side show the operating status of the safety modules. The following LEDs are present on the devices (from left to right).

Table 3-1	MSI 100/200 LED diagnostic indicators
-----------	---------------------------------------

LED	Color	Description
PWR	Green	Indicator for the voltage supply of the safety module
DATA	Green	Only MSI 200: Indicator for communication with safe extension modules via MSI-TBUS. This LED is only on if an MSI-TBUS participant is connected.
ERR	Red	Error display / indicator for safety-critical system errors
CONF	Green	Indicator for the configuration status and communication via the USB interface / AC-MSI-CFG1

Status indicators

The state of each of the 20 safe digital inputs and four safe digital outputs is indicated by one LED for each on the front side of the device. The display corresponds to the actually applied signal at the terminals (not the process image).

A detailed list of possible indicator combinations for diagnostic and status indicators and their meanings can be found in Chapter "Diagnosis" on page 89.

Confirming the new configuration

Resetting errors

Restart

3.3.2 Confirm button

The "Confirm" button is on the right-hand side on the front of the safety modules, above the USB interface. Briefly press this button using a pen to confirm a new configuration loaded via the USB interface. It is then accepted by the safety module.

See also "Downloading configuration from the MSIsafesoft configuration software" on page 80.

Use the "Confirm" button to reset displayed errors. Depending on the error type, the "Confirm" button must be pressed briefly (3 s) or for a prolonged period of time (min. 15 s).

To initiate a restart of the device, press the "Confirm" button on the device for at least 15 seconds. As part of the warm start process, all outputs are initially set to the safe state. Pending error messages are now reset as long as the cause of the error no longer exists. The device then enters the initialization phase.

Replacing AC-MSI-CFG1

If you load a new configuration by replacing the AC-MSI-CFG1, press and hold down the "Confirm" button while removing and inserting the AC-MSI-CFG1 according to the specified procedure.

i

For the precise procedure, please refer to Chapter "Loading the configuration using the AC-MSI-CFG1 memory module" on page 84.

3.3.3 USB interface

WARNING: Non-safe operation

The USB interface is not protected against ESD. If a there is a USB connection in place, the safety module is in non-safe operation. The safety function cannot be properly executed.

- Only use the USB connection for commissioning.
- Disconnect the USB connection for regular operation.

ATTENTION: Electrostatic discharge

The safety modules contain components that can be damaged or destroyed by electrostatic discharge. When handling the USB interface, observe the necessary safety measures against electrostatic discharge (ESD) according to EN 61340-5-1 and EN 61340-5-1.

Communication between the safety module and the MSIsafesoft configuration software takes place via the USB interface (standard USB 2.0). The communication includes the following events:

- Downloading of the configuration data (i.e., for the MSIsafesoft project)
- Optional: uploading of the configuration to open it as a project in MSIsafesoft and edit it as required
- Reading of values from the safety module during operation and "live" display in the connection editor of MSIsafesoft (online mode)
- Forcing of signals on the running safety module for commissioning purposes (non-safe commissioning mode)

Before connecting the safety module to the configuration PC, install the MSIsafesoft configuration software along with the associated USB drivers for the module.

Installing the USB drivers:

The first time a MSI 100/200 safety module is connected to the configuration PC, the "Found New Hardware Wizard" appears. To install the drivers, proceed as follows:

- 1. When asked "Do you want to establish a connection with Windows Update?", select the "No, not this time" option.
- 2. Now follow the USB driver installation for MSI 100/200: confirm with "Next".
 - a) When asked "Do you want to install this device software?", confirm your trust in the software manufacturer by selecting the "Install" button.
- 3. In the "Completing the Found New Hardware Wizard" window, complete the process by pressing the Finish button.

If the USB drivers are already installed, the appropriately configured PC detects the safety module automatically after the USB connection cable is connected.

If the MSIsafesoft configuration software is already running, the software detects the status of the safety module and indicates it at the bottom right in the status line.

```
Page 1, 1 Project: Read/Write PLC: Logged on PLC: Connected
```

Figure 3-6 Status line in the MSIsafesoft safe configuration software (safety module already contains a configuration project)

3.3.4 AC-MSI-CFG1

The safety modules are equipped with a pluggable AC-MSI-CFG1 memory module.

loaded on the safety module using the AC-MSI-CFG1.

After downloading the configuration from MSIsafesoft to the safety module, the configuration is stored in the AC-MSI-CFG1 memory module.

The AC-MSI-CFG1 must be inserted in the safety module both during normal operation and for downloading configuration data from MSIsafesoft via the USB interface.

As an alternative to downloading the configuration via the USB interface, it can also be

See "Loading the configuration using the AC-MSI-CFG1 memory module" on page 84.

1

Behavior without AC-MSI-CFG1

If no AC-MSI-CFG1 is plugged into the safety module or if it is pulled out, the safety module behaves as follows.

Table 3-2 Module behavior in case of missing AC-MSI-CFG1

AC-MSI-CFG1 status	Module behavior	
Stick is not plugged in while downloading the configuration data.	Configuration cannot be loaded. MSIsafesoft outputs an error message.	
Stick is not plugged in when the safety mod- ule is started.	All outputs remain switched off. Safety mod- ule outputs an error state. Safety module per- forms no functions.	
Stick is pulled out during running operation.	Safety module switches off all outputs and outputs an error state. Safety module exe- cutes no further functions.	
Stick is pulled out and plugged in according to the instructions for loading the configura- tion.	The safety module switches off all outputs and executes no functions until the stick is plugged in again correctly. The safety mod- ule does not indicate an error state	
See "Loading the configuration using the AC-MSI-CFG1 memory module" on page 84		

3.4 Signal connections

All input and output connections, with the exception of the USB interface, are made via pluggable and coded connection terminals.

Figure 3-8 Signal connections MSI 100/200

3.4.1 Safe inputs

10 to 119

The 20 safe digital inputs I0 to I19 are used for the direct connection of safe command devices or safety sensors.

The safe inputs are linked to the safety logic in the connection editor of the MSIsafesoft configuration software.

You can find further information on linking the safe inputs in the connection editor in the help system of the MSIsafesoft configuration software.

There, you will also find information on the topics of signal redundancy due to dual signals, two-channel sensors and cross-circuit detection.

The first dynamic test on the ground-switching output occurs up to 60 s after system restart. Not all errors in the peripherals or in the internal electronics of the outputs are therefore detected at the switch-on time.

If the switch-on time of the ground-switching outputs is < 60 s, the test takes place after an accumulated switch-on time of 60 s.

O0 to O3

3.4.2 Safe outputs

The safety-related outputs O0 to O3 are designed as digital semiconductor outputs.

The protective circuit is to be parallel to the load, not parallel to the switching contact.

The safe outputs are linked to the safety logic in the connection editor of the MSIsafesoft con-

To increase shutdown protection and cross-circuit protection, use outputs O0 and O1 in com-

(optional)

Test pulses

3.4.3 Signal outputs

M0 to M3

The non-safety-relevant signal outputs M0 to M3 are designed as digital semiconductor outputs.

ATTENTION: Module defect

The signal outputs can be destroyed by incorrect wiring.

- Do not connect the signal outputs in parallel.
- Prevent feedback to the signal outputs.

The signal outputs are used to control, e.g., a non-safe PLC or signal units.

Make certain that the GND potential of the signal receiver is the same as the GND potential of the safety module.

The signal outputs are linked in the connection editor of the MSIsafesoft configuration software.

1

i

You can find further information on linking the signal outputs in the connection editor in the help system of the MSIsafesoft configuration software.

3.4.4 Clock outputs

T0 and T1

The test pulses output at outputs T0 and T1 are used for cross-circuit detection at the inputs. Each output is available twice. The output test pulses T0 and T1 are phase-shifted.

The clock outputs are permanently assigned to the inputs. If this assignment is violated, the safety module detects a cross-circuit.

Cross-circuit detection can take place between T0 and T1 as well as between a test pulse and 24 V.

No cross-circuit detection takes place between inputs with the same test pulse.

Cross-circuit detectionTo implement cross-circuit detection, the relevant safe inputs must be configured accordingly
using the configuration editor in MSIsafesoft.

The MSIsafesoft configuration software specifies the clock signals to be used as follows:

- For the "even" inputs (I0, I2, I4 ... I18), cross-circuit detection is realized with the test pulse on T0.
- For the "odd" inputs (I1, I3, I5 ... I19), cross-circuit detection is realized with the test pulse on T1.

To use cross-circuit detection for two-channel sensors, "even" inputs must therefore always be combined with "odd" inputs.

1

Further information on configuring cross-circuit detection via the clock outputs can be found in the help system of the MSIsafesoft configuration software.

3.4.5 Ground-switching outputs

O0- and O1-

The ground-switching outputs O0- and O1- increase the shutdown protection and cross-circuit protection of the safety system. For example, these outputs can be used to disconnect a contactor connected to the safety module both via the safe 24 V output and via ground.

The ground-switching outputs are assigned to the safe outputs as follows and can only be used in the respective combination:

- Ground-switching output O0- to output O0
- Ground-switching output O1- to output O1

In order to use the ground-switching outputs, perform the corresponding configuration for outputs O0 and O1 in the MSIsafesoft configuration software.

For more detailed information, please see topic "Configuring the I/Os of the safety module" in the help system.

3.4.6 Supply connections

i

WARNING: Loss of the safety function

The use of unsuitable voltage supplies and the incorrect connection of the voltage supply can result in the loss of the safety function.

- Only supply the supply voltage at connections A1/A2 and 24/0V on the base device of a MSI 100/200 system via the same voltage supply.
- Likewise, supply the supply voltage for all other devices participating in the system via the same voltage supply.
- Only use power supply units with safe insulation and SELV/PELV in accordance with EN 50178 / VDE 0160.

WARNING: Loss of the safety function through interference

EMC interference can lead to the loss of the safety function.

Connect the output-side GND connection of the power supply unit to the functional earth (FE) of the system.

Connect the two supply connections (A1/A2 and 24V/0V) for an intended function of the safety module.

24V/0V

The 24V/0V supply connection is used to supply the safe outputs of the safety module as well as the ground-switching outputs with voltage.

A1/A2

Double terminal contacts A1/A1 and A2/A2

Supply connection A1/A2 is used to supply the logic of the safety module as well as the clock and signal outputs with voltage.

The double terminal contacts A1/A1 and A2/A2 are looped through and can be used to supply other modules or sensors.

The module can be permanently destroyed by an excessive current load.

• Observe the maximum permissible continuous current for devices connected to terminals A1 and A2

Limiting continuous current for looped-through current paths A1/A1 and A2/A2: see "Limiting continuous current" on page 101.

At the double terminal contacts, 2 and 3-conductor sensors and command devices can be supplied directly by the safety module ($U_N = 24 \text{ V DC}$).

WARNING: Loss of the safety function through parasitic voltages

With 3-conductor sensors, make certain that the GND potential of the sensor/command device is the same as the GND potential of the safety module.

4 MSI-EM200-8I4IO safe extension module

Figure 4-1

1	Observe the technical data of the safe extension module. See "Technical data MSI-EM200-8I4IO" on page 107.
Extension module for MSI 200	The MSI-EM200-8I4IO safe extension module makes additional configurable inputs and out- puts available for the MSI 200 safety module. Depending on the configuration, the inputs and outputs are used for connecting safe command devices and sensors or actuators.
Safe digital inputs/outputs	The extension module has eight safe digital inputs.
	You can configure another four signals as either safe digital inputs or outputs. The signal direc- tion (input or output) can only be changed over block by block, i.e., for all four signals at once.
	The outputs are actuated depending on the safety logic, which is executed in the MSI 200 safety module.
Digital clock/signal outputs (configurable)	The extension module has two digital clock/signal outputs, which are configurable.
	If you configure the outputs as clock outputs, they will support cross-circuit detection at the inputs of the safe extension module.
	If you configure the outputs as signal outputs, you thereby control, e.g., a non-safe PLC or sig- nal units. The signal outputs are not safety-oriented.
Connection technology	The extension module is available with either screw connections or with spring-cage connec- tions. All connection terminals are pluggable. The individual terminal blocks are mechanically coded to prevent swapping or skewed plug in.
Connection variants	

Leuze electronic

Screw terminals (left) and spring-cage terminals (right)
Block diagram

4.2 Diagnostic and status indicators

Diagnostic indicators The two diagnostic indicators on the front side display the operating status of the extension module.

 Table 4-1
 MSI-EM200-8I4IO LED diagnostic indicators

LED	Color	Description
PWR	Green	Indicator for the voltage supply of the extension module
ERR	Red	Error display

Status indicators

The state of each of the eight safe inputs and the four configurable safe inputs/outputs is indicated by a separate LED on the front side of the device.

i

A detailed list of possible indicator combinations for diagnostic and status indicators and their meanings can be found in Chapter "Diagnosis" on page 89.

4.3 Signal connections

All of the inputs and outputs are connected using pluggable and coded connection terminals.

Figure 4-4 Signal connections MSI-EM200-8I4IO

4.3.1 Safe inputs

The safe digital inputs are used for the direct connection of safe command devices or safety sensors.

The safe extension module has eight permanent safe digital inputs I4 to I11. Another four safe IO0 to IO3 as inputs digital inputs IO0 to IO3 can be obtained through appropriate configuration.

> The inputs/outputs are configured with the help of the configuration editor of the MSIsafesoft configuration software. The safe inputs are linked to the safety logic in the connection editor of the configuration software.

> The signal direction (input or output) can only be selected for IO0 to IO3 block by block, i.e., for all four signals at once.

Conditions for IO0 to IO3 as inputs:

If you use configurable inputs/outputs IO0 to IO3 as inputs, it is mandatory that cross-circuit detection be implemented with the extension module. To do this, power the affected inputs via clock outputs TM0 or TM1 of the extension module. See also chapter "Clock/signal outputs" on page 39.

You can find further information on configuring and linking the safe inputs in the help system of the MSIsafesoft configuration software.

There, you will also find information on the topics relevant to the safe inputs: signal redundancy due to dual signals, two-channel sensors and cross-circuit detection.

4.3.2 Safe outputs

IO0 to IO3 as outputs

14 to 111

Signals IO0 to IO3 can be configured as safety-related outputs and implemented as digital semiconductor outputs.

ATTENTION: Module defect

- Inductive loads can destroy the outputs.
- Use a suitable and effective protective circuit. •
- The protective circuit is to be parallel to the load, not parallel to the switching contact.
- Prevent feedback to the outputs.

The outputs are actuated depending on the safety logic, which is executed in the MSI 200 safety module.

The safe outputs are linked to the safety logic in the connection editor of the MSIsafesoft configuration software.

1 Yo

You can find further information on configuring and linking the safe outputs in the help system of the MSIsafesoft configuration software.

Test pulses

i

The safe output signals are clocked with a test pulse.

Reduced availability through test pulses

Test pulses can reduce the availability of the machine or system.

- Make certain that the connected load does not react to the test pulses.
- Use an appropriate filter terminal block if necessary.

4.3.3 Clock/signal outputs

TM0 and TM1

You can configure outputs TM0 and TM1 of the extension module as either non-safety-relevant digital signal outputs or as safe clock outputs.

The outputs are configured with the help of the configuration editor of the MSIsafesoft configuration software.

You can find further information on configuring and linking the clock/signal outputs in the configuration editor in the help system of the MSIsafesoft configuration software.

TM0 and TM1 as signal outputs

If you configure outputs TM0 and TM1 as signal outputs, you thereby control, e.g., a non-safe PLC or signal units.

i

Make certain that the GND potential of the signal receiver is the same as the GND potential of the safety module.

The non-safety-relevant signal outputs are designed as digital semiconductor outputs.

ATTENTION: Module defect

The signal outputs can be destroyed by incorrect wiring.

- Do not connect the signal outputs in parallel.
- Prevent feedback to the signal outputs.

Configure the two outputs TM0 and TM1 as signal outputs by making the following settings in the configuration editor in MSIsafesoft. The signal outputs can only be configured together.

For TM0 to TM1, set the "Configuration" parameter to the value "Signal output - M0 to M1".

The signal outputs are linked in the connection editor of the MSIsafesoft configuration software.

i

You can find further information on linking the signal outputs in the connection editor in the help system of the MSIsafesoft configuration software.

TM0 and TM1 as clock outputs

If you configure outputs TM0 and TM1 as clock outputs, they will support cross-circuit detection at the inputs of the safe extension module. See chapter "Error detection" on page 21.

If you use configurable inputs/outputs IO0 to IO3 as inputs, it is mandatory that cross-circuit detection be implemented with the extension module, i.e., the affected inputs must be supplied via clock outputs TM0 or TM1 of the extension module. See Chapter "Safe inputs" on page 38.

i

If you use configurable inputs/outputs IO0 to IO3 as outputs, configuring TM0 and TM1 as clock outputs results in an error.

Configure the two outputs TM0 or TM1 as clock outputs by making the following settings in the safe configuration editor. The clock outputs can only be configured together.

- For IO0 to IO3, set the "Signal configuration" parameter to the value "Configured as safe inputs with test pulse"
- For TM0 to TM1, set the "Configuration" parameter to the value "Clock T0 to T1"

The test pulses output at outputs TM0 and TM1 (if the configuration settings have been made accordingly) are used for cross-circuit detection at the inputs of the extension module. The output test pulses T0 and T1 are phase-shifted with respect to one another.

To implement cross-circuit detection, the relevant safe inputs must be configured accordingly using the configuration editor in MSIsafesoft.

The MSIsafesoft configuration software specifies the clock signals to be used as follows:

- For the "even" inputs (IO0 and IO2 as well as I4 ... I10), cross-circuit detection is realized with the test pulse on TM0.
- For the "odd" inputs (IO1 and IO3 as well as I5 ... I11), cross-circuit detection is realized with the test pulse on TM1.

4.3.4 Supply connections

WARNING: Loss of the safety function

The use of unsuitable voltage supplies and the incorrect connection of the voltage supply can result in the loss of the safety function.

- Only supply the supply voltage at connections A1/A2 and 24/0V on the base device of a MSI 100/200 system via the same voltage supply.
- Likewise, supply the supply voltage for all other devices participating in the system via the same voltage supply.
- Only use power supply units with safe insulation and SELV/PELV in accordance with EN 50178 / VDE 0160.

WARNING: Loss of the safety function through interference

EMC interference can lead to the loss of the safety function.

 Connect the output-side GND connection of the power supply unit to the functional earth (FE) of the system.

Connect the two supply connections (A1/A2 and MSI-TBUS) for an intended function of the safe extension module.

Yellow MSI-TBUS

.

The logic of the MSI-EM200-814IO safe extension module is supplied with voltage via the yellow MSI-TBUS DIN rail connector.

ATTENTION: Module defect

The use of an incorrect DIN rail connector or of a terminating plug can result in a module defect.

- Only use the yellow MSI-TBUS DIN rail connector.
- **Never** use the green TBUS DIN rail connector.

A1/A2

Supply connection A1/A2 is used to supply the configurable inputs/outputs as well as the configurable clock/signal outputs with voltage. i

5 MSI-EM200-4RO safe extension module

5.1 Product description

Observe the technical data of the safe extension module, see "Technical data and ordering data" on page 101.

The MSI-EM200-4RO safe extension module makes additional relay outputs available to the MSI 200 safety module that you can connect to the actuator.

The extension module has four safe relay outputs. The outputs are actuated depending on the safety logic, which is executed in the MSI 200 safety module.

The extension module has four non-safe digital signal outputs. The signal outputs are used to control, e.g., a non-safe PLC or signal units.

Connection technology The extension module is available with either screw connections or with spring-cage connections. All connection terminals are pluggable. The individual terminal blocks are mechanically coded to prevent swapping or skewed plug in.

Connection variants

Extension module for

Safe relay outputs

Digital signal outputs

MSI 200

Figure 5-1

Screw terminals (left) and spring-cage terminals (right)

Leuze electronic

Block diagram

Figure 5-2 MSI-EM200-4RO block diagram

Insulation coordination The following table shows the insulation of the relay outputs between one another and for the logic area of the device.

Table 5-1	Insulation	coordination
	insulation	coordination

	A1A2 24V/0V	13/14	23/24	33/34	43/44
A1A2 24V/0V	-	6 kV ST	6 kV ST	6 kV ST	6 kV ST
13/14	-	-	4 kV BI	4 kV BI	4 kV BI
23/24	-	-	-	4 kV BI	4 kV BI
33/34	-	-	-	-	4 kV BI
43/44	-	-	-	-	-

Legend:

ST Safe insulation

i

Basic insulation (Rated surge voltage 4 kV)

A mix of safe extra-low voltage and low voltage is not permitted.

Safe insulation / reinforced insulation

(Rated surge voltage 6 kV)

Reinforced insulation (e.g., through larger clearances and creepage distances of the conductor tracks) is designed to a higher overvoltage category than the basic insulation. It is, therefore, not possible to mix safe extra-low voltage circuits U \leq 25 V AC or U \leq 60 V DC and circuits with higher voltage.

Diagnostic indicators Status indicators for safe outputs 00 01 02 05 10 23 03 45 10 21 03 04 10 21 03 04 10 20 05 10 2

Diagnostic indicators The two diagnostic indicators on the front side display the operating status of the extension module.

Table 5-2 MSI-EM200-4RO LED diagnostic indicators

LED	Color	Description
PWR	Green	Indicator for the voltage supply of the extension module
ERR	Red	Error display

Status indicators

The state of each of the four safe relay outputs is indicated by a separate LED on the front side of the device.

i

A detailed list of possible indicator combinations for diagnostic and status indicators and their meanings can be found in Chapter "Diagnosis" on page 89.

5.3 Signal connections

All of the outputs are connected using pluggable and coded connection terminals.

Figure 5-4 Signal connections MSI-EM200-4RO

5.3.1 Safe relay outputs

O0 to O3

Outputs O0 to O3 are designed as safety-related relay outputs.

Table 5-3Relay outputs

Output	Relay contacts	Output	Relay contacts
00	13/14	O2	33/34
01	23/24	O3	43/44

WARNING: Loss of the safety function / hazardous body currents

Mixing different voltages (e.g., SELV/PELV with mains voltage) can destroy the relay contacts. The safety function can be lost and dangerous body currents may occur.

• Observe the information in Table 5-1 "Insulation coordination" on page 43.

ATTENTION: Module defect

Inductive loads can destroy the outputs.

- Use a suitable and effective protective circuit.
- The protective circuit is to be parallel to the load, not parallel to the switching contact.
- Prevent feedback to the outputs.

You can use the relay outputs as follows:

- Single-channel assignment
- Two-channel assignment

More detailed information on the assignment can be found in the following table.

Table 5-4Assignment of the relay outputs

Assignment	Number of outputs	Comment
Two-channel	2 two-channel relay outputs (wired in pairs)	Prerequisite: The bridges between contacts 13/23 and 33/43 are plugged-in and
	Pair 1: 13/14 and 23/24 (bridge between contacts 13/23)	the configuration has been performed ac- cordingly.
	Pair 2: 33/34 and 43/44 (bridge between contacts 33/43)	Info: The pairwise wiring of the relay outputs corresponds to the factory settings.
One-channel	4 single-channel relay out- puts – 13/14 – 23/24 – 33/34 – 43/44	Prerequisite: The bridges between con- tacts 13/23 and 33/43 are removed and the configuration has been performed accord- ingly.

i

Note for cat. 4 applications:

To achieve cat. 4 acc. to EN ISO 13849-1, wire the relay outputs in pairs (two-channel assignment).

The outputs are actuated depending on the safety logic, which is executed in the MSI 200 safety module.

The safe relay outputs are linked to the safety logic in the connection editor of the MSIsafesoft configuration software.

i

You can find further information on configuring and linking the safe outputs in the help system of the MSIsafesoft configuration software.

5.3.2 Signal outputs

M0 to M3

The non-safety-relevant signal outputs M0 to M3 are designed as digital semiconductor outputs.

ATTENTION: Module defect

The signal outputs can be destroyed by incorrect wiring.

- Do not connect the signal outputs in parallel.
- Prevent feedback to the signal outputs.

The signal outputs are used to control, e.g., a non-safe PLC or signal units.

Make certain that the GND potential of the signal receiver is the same as the GND potential of the safety module.

The signal outputs are linked in the connection editor of the MSIsafesoft configuration software.

You can find further information on linking the signal outputs in the connection editor in the help system of the MSIsafesoft configuration software.

5.3.3 Supply connections

WARNING: Loss of the safety function

The use of unsuitable voltage supplies and the incorrect connection of the voltage supply can result in the loss of the safety function.

- Only supply the supply voltage at connections A1/A2 and 24/0V on the base device of a MSI 100/200 system via the same voltage supply.
- Likewise, supply the supply voltage for all other devices participating in the system via the same voltage supply.
- Only use power supply units with safe insulation and SELV/PELV in accordance with EN 50178 / VDE 0160.

li

Connect the two supply connections (A1/A2 and MSI-TBUS) for an intended function of the safe extension module.

Yellow MSI-TBUS

The logic of the MSI-EM200-4RO safe extension module is supplied with voltage via the yellow MSI-TBUS DIN rail connector.

ATTENTION: Module defect

The use of an incorrect DIN rail connector or of a terminating plug can result in a module defect.

- Only use the yellow MSI-TBUS DIN rail connector.
- Never use the green TBUS DIN rail connector.

A1/A2

Double terminal contacts A1/A1 and A2/A2

Supply connection A1/A2 is used to supply the signal outputs of the safe extension module with power.

The double terminal contacts A1/A1 and A2/A2 are looped through and can be used to supply other modules or sensors.

ATTENTION: Module defect

The module can be permanently destroyed by an excessive current load.

• Observe the maximum permissible continuous current for devices connected to terminals A1 and A2

Limiting continuous current for looped-through current paths A1/A1 and A2/A2: see "Limiting continuous current" on page 101.

At the double terminal contacts, 2 and 3-conductor sensors and command devices can be supplied directly by the safety module ($U_N = 24 \text{ V DC}$).

WARNING: Loss of the safety function through parasitic voltages

With 3-conductor sensors, make certain that the GND potential of the sensor/command device is the same as the GND potential of the safety module.

6 Wiring examples

6.1 Information on the wiring examples

In the following examples, clock outputs T0 and T1 are used.

With safe extension module MSI-EM200-8I4IO, these correspond to clock outputs TM0 and TM1 if they are configured as clock outputs.

Terminals IO0 to IO3 of safe extension module MSI-EM200-8I4IO function as inputs if they are appropriately configured as inputs.

6.2 Single-channel assignment of the safe digital inputs

With the single-channel assignment of the safe digital inputs, the inputs function independent of one another.

6.2.1 Cross circuit monitoring switched on

If an input pair is configured single-channel with cross circuit monitoring, the following permanent assignment applies:

- All "even" inputs I0, I2, ... are permanently assigned to clock output T0.
- All "odd" inputs I1, I3, ... are permanently assigned to clock output T1.

Figure 6-1 Single-channel assignment of the inputs

Key dates

Sensor	One-channel
Sensor supply	Internally through clock output T0 (clocked) or T1 (clocked)
Attainable safety integrity	SIL 1/SILCL 1/Cat. 1/PL c

Configuration	Configured as
Input xx channel 1/channel 2	
Cross circuit monitoring	Yes, with test pulse T0 for all "even" inputs I0, I2, Yes, with test pulse T1 for all "odd" inputs I1, I3,

6.2.2 Cross circuit monitoring switched off, external supply

Legend:	
S1	Safety switches
10	Input
+24 V	Supplied by external 24 V (note potential reference)

Figure 6-2 Single-channel assignment of the inputs: external supply

Key dates

Sensor	Single-channel switch
Sensor supply	External (24 V, note potential reference)
Attainable safety integrity	SIL 1/SILCL 1/Cat. 1/PL c

WARNING: Loss of the safety function

Cross circuits can lead to the loss of the safety function.

• Exclude the possibility of cross circuits in order to be able to achieve the specified safety integrity.

Configuration	Configured as
Input xx channel 1/channel 2	
Cross circuit monitoring	No

6.2.3 External supply (OSSD)

Legend:	
OSSD	OSSD sensor
10	Input
+24 V	Supplied by external 24 V
0 V	External 0 V (note potential reference)

Figure 6-3

Single-channel assignment of the inputs: external supply (OSSD)

	î		
L	•	2	

WARNING: Loss of the safety function

Parasitic voltages can lead to the loss of the safety function.
Exclude the possibility of parasitic voltages through appropriate wiring.

Key dates

Sensor	Single-channel OSSD output (with internal testing)
Sensor supply	External (OSSD sensor)
Attainable safety integrity	SIL 1/SILCL 1/Cat. 1/PL c

WARNING: Loss of the safety function

Cross circuits can lead to the loss of the safety function.

• Exclude the possibility of cross circuits in order to be able to achieve the specified safety integrity.

Configuration	Configured as	
Input xx channel 1/channel 2		
Cross circuit monitoring	No	

1

6.3 Two-channel equivalent assignment of the safe digital inputs

With the two-channel assignment of the inputs, two adjacent inputs of the same connector are used.

For two-channel equivalent assignment of the inputs, use the "equivalent" function module in the MSIsafesoft configuration software.

The function description of the module can be found in the help system of the software.

6.3.1 Cross circuit monitoring switched on, supplied by T0 and T1

Possible wiring variants:

Legend:	
S1, S2	Switching elements
10, 11	Inputs
T0, T1	Supplied by T0 and T1

Figure 6-4 Two-channel equivalent assignment of the inputs, supplied by T0 and T1 (both clocked)

Key dates

Sensor	Two-channel equivalent with cross circuit monitoring
Sensor supply	Internal by clock outputs T0 and T1 (both clocked)
Attainable safety integrity	SIL 3/SILCL 3/Cat. 4/PL e

Configuration	Configured as
Input xx channel 1/channel 2	
Cross circuit monitoring	Yes, with test pulse T0 at I0 Yes, with test pulse T1 at I1

6.3.2 Cross circuit monitoring switched off, external supply

Figure 6-5 Two-channel equivalent assignment of the inputs, external supply, cross circuit monitoring switched off

Key dates

Sensor	Two-channel equivalent
Sensor supply	External (24 V, note potential reference)
Attainable safety integrity	SIL 3/SILCL 3/Cat. 3/PL d

WARNING: Loss of the safety function

An accumulation of errors can lead to the loss of the safety function.

• Test the safety function at appropriate time intervals to detect errors in good time.

Configuration	Configured as	
Input xx channel 1/channel 2		
Cross circuit monitoring	No	

6.3.3 External supply (OSSD)

Figure 6-6 Two-channel equivalent assignment of the inputs, external supply (OSSD)

WARNING: Loss of the safety function

Parasitic voltages can lead to the loss of the safety function.

Exclude the possibility of parasitic voltages through appropriate wiring.

Key dates

.

Sensor	Two-channel OSSD output (with internal testing)
Sensor supply	External (OSSD sensor)
Attainable safety integrity	SIL 3/SILCL 3/Cat. 4/PL e

Configuration	Configured as	
Input xx channel 1/channel 2		
Cross circuit monitoring	No	

i

6.4 Two-channel antivalent assignment of the safe digital inputs

With the two-channel assignment of the inputs, two adjacent inputs of the same connector are used.

For two-channel antivalent assignment of the inputs, use the "antivalent" function module in the MSIsafesoft configuration software.

The function description of the module can be found in the help system of the software.

6.4.1 Cross circuit monitoring switched on, supplied by T0 and T1

Possible wiring variants:

Legend:	
S1, S2	Switching elements
10, 11	Inputs
T0, T1	Supplied by T0 and T1

Figure 6-7 Two-channel antivalent assignment of the inputs, supplied by T0 and T1, cross circuit monitoring switched on

Key dates

Sensor	Two-channel antivalent
Sensor supply	Internal by clock output T0 and T1, cross circuit monitoring switched on
Attainable safety integrity	SIL 3/SILCL 3/Cat. 4/PL e

WARNING: Loss of the safety function

An accumulation of errors can lead to the loss of the safety function.

• Test the safety function at appropriate time intervals to detect errors in good time.

Configuration	Configured as	
Input xx channel 1/channel 2		
Cross circuit monitoring	Yes, with test pulse T0 at I0 Yes, with test pulse T1 at I1	

6.4.2 Cross circuit monitoring switched off, external supply

Figure 6-8 Two-channel antivalent assignment of the inputs, external supply

Key dates

Sensor	Two-channel antivalent
Sensor supply	External (24 V, note potential reference)
Attainable safety integrity	SIL 3/SILCL 3/Cat. 3/PL d

WARNING: Loss of the safety function

An accumulation of errors can lead to the loss of the safety function. • Test the safety function at appropriate time intervals to detect errors in

Test the safety function at appropriate time intervals to detect errors in good time.

Configuration	Configured as
Input xx channel 1/channel 2	
Cross circuit monitoring	No

6.5 Safe digital outputs

6.5.1 Information on the protective circuitry of external relays/contactors (freewheeling circuit)

Possible wiring variants:

Observe the following measures:

- Limit the inductive cut-off voltage to < -15 V (e.g, with RC elements, suppressor diodes or varistors).
- Note that the freewheeling circuit affects the decay time and the life expectancy of the contactor.
- When dimensioning the protective circuit of the relay, take into account the information provided by the relay manufacturer.

6.5.2 Single-channel assignment of the safe digital outputs

K1 (R) and, where applicable, K2 (R) represent the forced normally closed contacts for state monitoring of the relays (readback contacts).

- Connect these contacts via safe digital inputs.
- Evaluate the readback and, thus, the state of the switching elements in the safe application program.

WARNING: Loss of the safety function

- Parasitic voltages can lead to the loss of the safety function.
- Exclude the possibility of parasitic voltages through appropriate wiring.

Key dates

Actuator	One-channel	Two-channel
Attainable safety integrity	SIL 1/SILCL 1/Cat. 1/PL c	SIL 3/SILCL 3/Cat. 4/PL e

6.5.3 Two-channel assignment of the safe digital outputs

K1 (R) and K2 (R) represent the forced normally closed contacts for state monitoring of the relays (readback contacts).

- Connect these contacts via safe digital inputs.
- Evaluate the readback and, thus, the state of the switching elements in the safe application program.

WARNING: Loss of the safety function

- Parasitic voltages can lead to the loss of the safety function.
- Exclude the possibility of parasitic voltages through appropriate wiring.

Key dates

Actuator	Two-channel
Attainable safety integrity	SIL 3/SILCL 3/Cat. 4/PL e

6.6 Safe relay outputs

6.6.1 Information on the protective circuitry of external relays/contactors (freewheeling circuit)

Figure 6-12 Example for the freewheeling circuit of an external relay

A protective circuit via the relay contacts is not permissible.

6.6.2 Single-channel assignment of the safe relay outputs

With single-channel assignment, the safety relays operate independent of one another. They are actuated individually.

Optional readback of the actuator is possible via the safe inputs of the MSI 100/200 system.

Information on switching other voltages: see chapter 14 "Technical data and ordering data".

Key dates

Actuator	One-channel
Attainable safety integrity	SILCL 1/Cat. 1/PL c

Configuration	Configured as
Signal configuration	Single-channel (O0 and O1 switch independently)

6.6.3 Single-channel assignment of the safe relay outputs

With two-channel assignment, the safety relays of both channels work together. This assignment is permanent and cannot be configured.

A possible readback of the actuator is possible via the safe inputs of the MSI 100/200 system.

Information on switching other voltages: see chapter 14.3 "Technical data MSI-EM200-4RO".

7 Mounting, removal and electrical installation

7.1 Safety notices for mounting, removal and electrical installation

Qualified personnel

Mounting, removal and electrical installation of the MSI 100/200 system may only be performed by qualified personnel. See "Qualified personnel" on page 10.

WARNING: Serious personal injury or material damage

Disregarding this warning may result in damage to equipment and/or serious personal injury.

WARNING: Dangerous voltage

Mounting, removal and electrical installation without ensuring that the system is free of voltage can result in dangerous electric shocks.

- Perform mounting, removal and electrical installation of the safety modules and safe extension modules only in a voltage-free state.
- De-energize the entire system before performing installation work and secure the system against unintentional switching-on of the voltage.
- Only switch voltage on after completing the setting and the system can no longer pose a hazard.

WARNING: Unintended machine start-up

Mounting, removal and electrical installation without ensuring that the system is free of voltage can result in unintended machine start-up.

- Perform mounting, removal and electrical installation of the safety modules and safe extension modules only in a voltage-free state.
- De-energize the entire system before performing installation work and secure the system against unintentional switching-on of the voltage.
- Only switch voltage on after completing the setting and the system can no longer pose a hazard.

ATTENTION: Electrostatic discharge

The modules contain components that can be damaged or destroyed by electrostatic discharge. When handling the modules, take the necessary safety precautions against electrostatic discharge (ESD) according to EN 61340-5-1 and IEC 61340-5-1.

7.2 Mounting

7.2.1 Mounting instructions

ATTENTION: Property damage

Improper mounting can result in property damage.

When mounting the MSI 100/200 system, observe the following instructions.

Table 7-1Important mounting instructions

Connection via DIN rail connectors		
MSI-TBUS	To connect the MSI 100 and MSI 200 safety modules as well as the MSI-EM200-8I4IO and MSI-EM200-4RO safe extension modules, use only the yellow MSI-TBUS DIN rail connector.	
	Connection with another DIN rail connector is not permitted.	
TBUS	For the connection of non-safe extension devices (gateways), use only the green TBUS DIN rail connector.	
	Connection with another DIN rail connector is not permitted.	
Mounting direction for extensions		
Non-safe extension: left	Mount a non-safe extension module (gateway) to the left of the MSI 100 or MSI 200 safety module.	
Safe extension: right	Mount the MSI-EM200-8I4IO and/or MSI-EM200-4RO safe extension modules to the right of the MSI 200 safety module.	
Maximum number of extension devices		
Non-safe extension	Connect a maximum of one non-safe extension device (gateway) to the MSI 100 or MSI 200 safety module.	
Safe extension	Connect a maximum of ten safe extension modules to the MSI 200 safety module.	

You can find a graphical depiction of an MSI 100/200 system extended with MSI-TBUS and TBUS in Figure 2-2 on page 17.

7.2.2 Mounting location

- Mount the module in a dust- and humidity-protected switch cabinet or terminal box (IP54 or higher).
- Secure the switch cabinet/terminal box against opening by unauthorized persons.

7.2.3 Mounting

35 mm DIN rail

TBUS / MSI-TBUS DIN rail connectors (optional)

The modules of the MSI 100/200 system are intended only for mounting on 35 mm DIN rails acc. to EN 60715. To avoid contact resistance, only use clean and corrosion-free DIN rails.

- 1. **Optional:** If you would like to use the DIN rail connectors to create a connection station with extension units, proceed as follows.
 - b) Connect the required number of DIN rail connectors for the connection station (see Figure 7-1, A).
 - c) Snap this group of DIN rail connectors onto the DIN rail (see steps B and C).

Figure 7-1 Mounting DIN rail connectors

Mounting the MSI 100/200 module

2. Place the module onto the DIN rail from above so that the upper retaining groove of the module is hooked onto the top edge of the DIN rail (see Figure 7-2).

ATTENTION: Module defect

The use of an incorrect DIN rail connector or of a terminating plug can result in a module defect.

- Use only the yellow MSI-TBUS DIN rail connector for safe extension modules.
- For non-safe extension devices, use the green TBUS DIN rail connector.

ATTENTION: Damage to the connectors

When using DIN rail connectors, ensure that the contact opening in the base of the module is aligned correctly over the contact block of the DIN rail connector.

ATTENTION: Connector wear

The modules may be connected to the DIN rail connectors a maximum of eight mating cycles.

Figure 7-2 Mounting a MSI 100/200 module on the DIN rail

- 3. Push the lower part of the module that is furthest from the DIN rail towards the DIN rail until it engages with a click.
- 4. Check that the module is fixed securely on the DIN rail.
- 5. When mounting additional modules on the DIN rail (e.g., gateways or power supply units), place them on the DIN rail with no spacing, i.e., in direct contact with the sides of the housing.
- Mount a standard end clamp for 35 mm DIN rails (TS 35) on both sides of the module or module group. This prevents the modules from sliding and protects against faulty connection with other modules on the DIN rail. You thereby also avoid an accidental connection of other DIN rail connectors.

7.3 Removal

- 1. Pull the locking latch on the bottom of the module down using a screwdriver, for example, to release the module from the DIN rail.
- 2. Slightly lift the bottom of the module away from the DIN rail.
- 3. Pull the module diagonally upwards away from the DIN rail.

i

7.4 Electrical installation

For reliable and touch-safe contacts, isolate the connection ends for all modules of the MSI 100/200 system as follows:

To maintain UL approval, use copper cables that are designed for operating temperatures of > 75 $^\circ\text{C}.$

- 4. **Optional:** Implement a signaling function by, e.g., connecting a non-safe PLC or a signal unit to signal outputs **M0** to **M3**.
- 5. **Optional:** Implement cross-circuit detection for the "even" inputs **I0, I2, I4, ... I18** by wiring these to clock output **T0**.

For the "odd" inputs I1, I3, I5, ... I19, use clock output T1.

Connecting signal lines for the MSI-EM200-8I4IO safe extension module:

MSI-EM200-8I4IO

IO0 to IO3 as inputs:

- 1. Connect the sensors to safe inputs I4 to I11.
- 2. Connect the sensors to safe inputs $\ensuremath{\text{IO0}}$ to $\ensuremath{\text{IO3}}$.
- 3. Mandatory: Implement cross-circuit detection for inputs IO0 to IO3 by wiring these to clock outputs TM0 and TM1.

IO0 to IO3 as outputs:

- 1. Connect the sensors to safe inputs I4 to I11.
- 2. Connect the actuators to safe outputs IO0 to IO3.
- 3. **Optional:** Implement a signaling function by, e.g., connecting a non-safe PLC or a signal unit to the outputs configured as signal outputs **TM0** and **TM1**.
- 4. **Optional:** Implement cross-circuit detection for inputs **I4** to **I11** by wiring these to the outputs configured as clock outputs **TM0** and **TM1**.

Connecting signal lines for the MSI-EM200-4RO safe extension module:

MSI-EM200-4RO

- 1. Connect the actuators to safe relay outputs **O0** to **O3**.
- 2. **Optional:** Implement a signaling function by, e.g., connecting a non-safe PLC or a signal unit to signal outputs **M0** to **M3**.

7.4.2 Connecting the supply voltage

Switching on

The modules of the MSI 100/200 system have no main switch. You switch them on by applying the supply voltage.

Once the supply voltage has been applied, the modules execute an initialization routine (all LEDs illuminate). Once the "PWR" status indicator lights up permanently, the respective MSI 100/200 module is ready to operate.

MSI 100 and MSI 200

Connecting the supply voltage for the safety modules:

1. Connect the supply voltage to terminal points A1 (24 V DC) and A2 (0 V).

Connections A1/A2 supply the logic as well as the clock and signal outputs of the safety modules.

2. Connect the supply voltage to terminal points **24V** and **0V**.

Connections 24V/0V supply the safe outputs and the ground-switching outputs of the safety modules.

WARNING: Loss of the safety function

The use of unsuitable voltage supplies and the incorrect connection of the voltage supply can result in the loss of the safety function.

- Only supply the supply voltage at connections A1/A2 and 24/0V on the base device of a MSI 100/200 system via the same voltage supply.
- Likewise, supply the supply voltage for all other devices participating in the system via the same voltage supply.
- Only use power supply units with safe insulation and SELV/PELV in accordance with EN 50178 / VDE 0160.

1

Connect the two supply connections (A1/A2 and 24V/0V) for an intended function of the safety module.

i

Double terminal contacts A1 and A2 provide the supply voltage for supplying other sensors and command devices.

Also read chapter "Ground-switching outputs" on page 34.

MSI-EM200-8I4IO and MSI-EM200-4RO

Connecting the supply voltage for the safe extension modules:

1. Connect the supply voltage to terminal points A1 (24 V DC) and A2 (0 V) of the respective safe extension module.

Connections A1/A2 supply the clock/signal outputs as well as the inputs and outputs (MSI-EM200-8I4IO) or the signal outputs (MSI-EM200-4RO).

The logic of the safe extension modules is supplied with voltage via the yellow MSI-TBUS DIN rail connector.

i

WARNING: Loss of the safety function

The use of unsuitable voltage supplies and the incorrect connection of the voltage supply can result in the loss of the safety function.

- Only supply the supply voltage at connections A1/A2 and 24/0V on the base device of a MSI 100/200 system via the same voltage supply.
- Likewise, supply the supply voltage for all other devices participating in the system via the same voltage supply.
- Only use power supply units with safe insulation and SELV/PELV in accordance with EN 50178 / VDE 0160.

Connect the two supply connections (A1/A2 and MSI-TBUS) for an intended function of the safe extension modules.

Figure 7-6 Connecting the supply voltage MSI-EM200-8I4IO and MSI-EM200-4RO

Also read:

- MSI-EM200-8I4IO: "Supply connections" on page 41
- MSI-EM200-4RO: "Supply connections" on page 47

7.4.3 Example connection of an MSI 100/200 system

Note the following points when connecting your MSI 100/200 system to the various participants:

Voltage supply and ground reference

- Supply the supply voltage for all other devices participating in the system via the same voltage supply.
- Only use power supply units with safe insulation and SELV/PELV in accordance with EN 50178 / VDE 0160.
- Safeguard the voltage supply externally with a suitable fuse.
- Connect the output-side GND connection of the power supply unit to the functional earth (FE) of the system.
- Ensure that all inputs and outputs of the system are connected to the same ground.

Other participants

i

- For the connection of safe extension modules, use only the yellow MSI-TBUS DIN rail connector.
- For the connection of non-safe extension devices (gateways), use only the green TBUS DIN rail connector.

The following figure shows the correct connection of the voltage supply for an MSI 100/200 system with various participants.

Legend:

F1	External fuse	
≜	Functional earth (FE)	
8 Firmware update

Update the firmware of the MSI 100/200 system with the help of the MSIsafesoft safe configuration software.

8.1 Safety notices for the firmware update

The following safety notices must be observed during and after the firmware update:

•

WARNING: Non-safe operation

While the firmware update is running, the MSI 100/200 operates in the non-safe mode. Reliable detection of the safety demand is not guaranteed while in this operating state.

- Therefore, make sure that running the firmware update will not lead to any hazardous situations.
- Take action to prevent the machine from being started up unintentionally (by, e.g., disconnecting the terminals on the output side from the MSI 100/200 system, and disconnecting the drives from the power supply).

ATTENTION: Module defect

Interrupting the connection between the PC and safety module during the firmware update can damage the device.

A faulty or incomplete firmware installation can render communication between the PC and safety module impossible. In this case, the faulty installation cannot be corrected with the assistance of MSIsafesoft.

- Do **not** disconnect the USB cable during the update process.
- Do not switch off the safety module during the update process.

Validation / verification

Once the firmware update has concluded, validate and verify the safety application.

Leuze electronic

8.2 Requirement for firmware update

Before running the firmware-update, ensure the following points:

- The MSI 100 or MSI 200 safety module is connected to the PC via the USB cable and switched on.
- The AC-MSI-CFG1 memory module is plugged into the safety module.
- A project for the safety module is loaded in the MSIsafesoft configuration software.
- Simulation mode for the MSIsafesoft configuration software is switched off.
- Displayed in the status line of the MSIsafesoft configuration software is: "Control: Connected" and "Control: Logged off".
- Displayed in the status line of the MSIsafesoft configuration software is: "Project: Write protected".

8.3 Running a firmware update

1. To start the firmware update in the MSIsafesoft configuration software, select the "Safe control > Firmware update" menu item.

The wizard, which will guide you through the update, is displayed.

2. Proceed as described in detail in the help system.

You will find the topic "Firmware update" listed in the contents of the MSIsafesoft configuration software help system.

See also "Opening the software help system" on page 9-76.

9 MSIsafesoft configuration software

9.1 Installing software

Installation

The installation routine for the configuration software includes the installation of the driver for the USB interface. The driver enables communication between the PC and the modules of the MSI 100/200 system.

To ensure that the safety modules are automatically and correctly detected by the configuration software, the software must be fully installed **before** the device is connected to the PC the first time.

Proceed as follows:

1. If you have downloaded the configuration software:

Extract the downloaded file and start the installation program (setup file).

If you purchased the configuration software on CD:

Insert the CD in the drive. A menu opens automatically. Start the installation program via menu item "Install software".

i

If you have deactivated the auto start option on your computer, open the "MSIsafesoft" folder on the CD-ROM and execute the setup file.

2. Select the desired language for the installation routine.

This selection also sets the language for the MSIsafesoft user interface, which is set when the software is started for the first time.

The installation program now guides you through the installation step by step.

3. Follow the instructions on the screen.

Once MSIsafesoft is installed, you will be prompted to install the drivers for the safety module.

- 4. Follow the instructions on the screen.
- 5. In the Windows dialog box for driver installation, select "Install the software automatically (recommended)".

Finally, a message appears indicating that the configuration software and drivers for the safety module have been fully installed.

9.2 Opening the software help system

You will find a description of the comprehensive functions of MSIsafesoft in the help system for the software.

There are various ways to open the help system:

- a) In the "?" menu, select "Help topics".
 - The table of contents for the help system appears. Search for a help topic as described below.
- b) In an active dialog box or window, press <F1>.
- The context-sensitive help for the active dialog box or window appears.
- c) In the connection editor, select an object and press <F1> in order to view information relating to that object.

For safe functions and function blocks, general information about the objects can be accessed in this way.

d) Use the "Help" context menu item of an applicable module or function to open the relevant module information.

The diagram below illustrates the various options for opening the help system and searching for information via context-sensitive help or via the contents or index.

Figure 9-1

Opening the help system in the MSIsafesoft configuration software

1

10 Configuration and commissioning

Qualified personnel

The MSI 100/200 system may only be configured and commissioned by qualified personnel. See "Qualified personnel" on page 10.

10.1 Example for configuration and commissioning

For detailed information, please refer to the sections cited and the help system of the MSIsafesoft configuration software.

Figure 10-2 Flow chart: Example configuration and commissioning (2 of 3)

Flow chart: Example configuration and commissioning (3 of 3)

10.2 Downloading configuration from the MSIsafesoft configuration software

WARNING: Risk of injury or damage to equipment due to unintentional system states or incorrect responses

The safety module is in the commissioning phase, i.e., unintentional system states or incorrect responses cannot be ruled out. Operation is not safe.

- Make sure that the act of triggering the safety demand will not pose a risk for people or materials.
- Do not enter any hazardous areas and ensure that no other persons can access the danger zone either.

The configuration, including the device configuration, is created in the MSIsafesoft configuration software as a project. Once finished, load the configuration in the MSI 100 or MSI 200 safety module. This data is usually transmitted via the USB interface of the safety module.

Alternatively, the configuration can also be loaded by inserting a AC-MSI-CFG1 memory module that contains the relevant data.

For further information, please refer to "Loading the configuration using the AC-MSI-CFG1 memory module" on page 84.

•

The memory requirements of the MSI100/200 system are influenced mainly by the following factors:

- The number of digital I/O extension modules used
- The number of function modules used
- The type of function modules used
- The number of flags used
- The extent of user comments in the program

In the case of very complex logic programs, our service department can provide you with support in optimizing memory use (see "Safety hotline" on page 14).

To download the configuration, proceed as follows:

- 1. Ensure the following:
 - The safety module is switched on.
 - The MSIsafesoft configuration software is installed on the configuration computer (this installation also includes the required drivers).
 - The MSIsafesoft configuration software is started.
 - A AC-MSI-CFG1 memory module is plugged into the safety module. The configuration cannot otherwise be loaded.
- 2. Connect the USB cable to the safety module (Mini-USB connector, 5-pin, maximum cable length 3 m) and to a USB port on the PC.

ATTENTION: Electrostatic discharge

The safety modules contain components that can be damaged or destroyed by electrostatic discharge. When handling the USB interface, observe the necessary safety measures against electrostatic discharge (ESD) according to EN 61340-5-1 and EN 61340-5-1.

Figure 10-4 USB connection between PC and safety module

The project can only be downloaded to the safety module if you have logged on in MSIsafesoft with the correct **control password**.

- 3. In the "Safe control" menu, select "Log on", enter the control password in the dialog box, and click "OK".
- Download the project created in MSIsafesoft to the safety module by clicking on the depicted icon in the toolbar.
 Prerequisite for this is that the current project was first checked and determined to be free of errors (see MSIsafesoft help system).

Is there already a project on the safety module?

If the status line on the right has the yellow entry "Control: No project", the project is transmitted to the safety module without any further prompts.

If another project or another version of the same project is already available on the safety module and is being executed, a corresponding dialog box appears, indicating this fact.

 Click "Yes" in this dialog box to overwrite the current control configuration on the safety module.

Data transmission

Logging on with control

password

During data transmission

_

- A progress indicator is displayed in the status line of MSIsafesoft.
 - The "CONF" status display flashes quickly on the safety module (approximately 6 Hz).

If data transmission is interrupted during the download, you can find assistance in chapter "Problems and solutions" starting on page 95.

Following successful data transmission

- The "CONF" status display flashes slowly on the safety module (approx. 1.5 Hz).
- A corresponding dialog
 - "Sending successful" appears in the configuration software.

If the "Sending successful" dialog is displayed, perform the next steps in the following order.

Download succeeded!	Please note:
1. Confirm new program.	First acknowledge the configuration on the safety module (see step 5).
2. Check every new and changed safety function!	
and useful information	before clicking "OK".

5. Confirm the new configuration by pressing the "Confirm" button using a pen (see Figure 10-6).

WARNING: Danger due to activated outputs

Following acknowledgment, the safety module starts running immediately. Provided that no start interlock is active, which must be canceled manually, outputs may be activated immediately after start-up.

 Make sure that the start-up of the safety module cannot lead to any hazardous situations.

The safety module is then reinitialized (all diagnostic indicators illuminate briefly) and then

switches to safe normal operation (only "PWR" LED on).

Figure 10-6 Confirming the configuration with the "Confirm" button

Initialization

Ending data transmission

6. Exit the dialog in the configuration software and click on "OK".

Start interlock

$\overline{\mathbb{N}}$

Start interlock active?

WARNING: Unintended machine start-up

Canceling the start interlock can result in unintended machine start-up.

- Before canceling the start interlock, make certain that canceling cannot result in a dangerous machine state.
- When planning the machine or system, make certain that canceling the start interlock is possible only if the danger zone is visible.

If a start interlock has been predefined in the configuration, it will be active following start-up. An active start interlock must be canceled by pressing a reset button which is connected to the safety module according to the configuration.

For further information, please refer to "System start-up and restart behavior" on page 19.

If the safety module is not initialized correctly, proceed as described in chapter "Problems and solutions" on page 95.

Next steps

Next, continue with the function test. See chapter "Function Test" on page 87.

Check values (CRC)

Check values (CRC)

To ensure that any distortions to the configuration data during transmission to the safety module can be reliably detected, a check value (CRC) is calculated in the configuration software when the project is checked.

The safety module also determines the check value for the downloaded data.

If the check values on the safety module and in the configuration software are identical, all data has been saved on the safety module without distortion. If the check values differ, a corresponding error message is output.

Deviating check values through subsequent changes

The check value (CRC) will also differ if subsequent modifications have been made to the project in the configuration software, but have not yet been downloaded to the safety module.

Note

For example, the following tasks are evaluated as changes in the project:

- Moving an object
- Making a change to the project documentation

Recommendation

Record the check value (CRC) after commissioning and subsequent validation in the machine protocol to understand subsequent project changes.

10.3 Loading the configuration using the AC-MSI-CFG1 memory module

WARNING: Risk of injury or damage to equipment due to unintentional system states or incorrect responses

The safety module is in the commissioning phase, i.e., unintentional system states or incorrect responses cannot be ruled out. Operation is not safe.

- Make sure that the act of triggering the safety demand will not pose a risk for people or materials.
- Do not enter any hazardous areas and ensure that no other persons can access the danger zone either.

Configurations can be downloaded not only via the USB interface but also with the help of the AC-MSI-CFG1 memory module. In this way, the configuration of one device can be transferred to other safety modules. This is useful if no configuration computer is available at an installation location or for transferring the configuration to a new device on device replacement.

To replace the AC-MSI-CFG1 memory module, proceed as follows. This sequence ensures that the active configuration is not overwritten by accidental insertion of an AC-MSI-CFG1.

Removing the AC-MSI-CFG1

1. It is not permissible to replace the AC-MSI-CFG1 during running operation. If the safety module is already in operation, perform the following steps.

- a) First, shut down the machine.
- b) Switch off the safety module.
- c) Remove the current AC-MSI-CFG1.

After the AC-MSI-CFG1 has been removed correctly, all outputs of the safety module are in a safe, de-energized state (FALSE). As long as the AC-MSI-CFG1 is removed, the safety module has no function.

If the AC-MSI-CFG1 is not removed correctly, the safety module also displays an error message.

Inserting the new AC-MSI-CFG1

i

WARNING: Danger due to activated outputs

After you have loaded the configuration by replacing the AC-MSI-CFG1, the safety module starts with program execution. Provided that no start interlock which must be cancelled manually is active, outputs may be activated immediately.

- Make sure that the start-up of the safety module cannot lead to any hazardous situations.
- 2. Insert the new AC-MSI-CFG1 in the safety module, which is switched off.

The AC-MSI-CFG1 is mechanically coded and cannot be inserted in the device incorrectly.

- Switch the safety module on and wait until it has initialized.
 All four diagnostic indicators light up once during initialization.
 The safety module now detects the previously unknown AC-MSI-CFG1 and indicates this with a flashing "CONF" diagnostic indicator.
- 4. Remove the AC-MSI-CFG1 again.

- 5. Press the "Confirm" button on the device and hold it down.
- 6. Reinsert the AC-MSI-CFG1 while holding down the "Confirm" button.

7. Release the "Confirm" button once the AC-MSI-CFG1 is inserted correctly. The safety module now initializes with the new configuration.

Start interlock active?

Start interlock

WARNING: Unintended machine start-up

Canceling the start interlock can result in unintended machine start-up.

- Before canceling the start interlock, make certain that canceling cannot result in a dangerous machine state.
- When planning the machine or system, make certain that canceling the start interlock is possible only if the danger zone is visible.

If a start interlock has been predefined in the configuration, it will be active following start-up. An active start interlock must be canceled by pressing a reset button which is connected to the safety module according to the configuration.

For further information, please refer to "System start-up and restart behavior" on page 19.

If the safety module is not initialized correctly, proceed as described in chapter "Problems and solutions" on page 95.

10.4 Uploading the configuration from the safety module

Projects downloaded to the safety module are saved there and can be uploaded to the PC and the configuration software again if required.

This may be required, for example, if a project has to be read from the safety module for diagnostic purposes.

It is possible to upload a project from the safety module to the configuration software without the control password. However, to edit the uploaded project you will need the correct project password.

To upload the project, proceed as follows:

- 1. If a project is currently open in the configuration software, save it before uploading the required project from the safety module.
- 2. Exit commissioning mode and the online mode of the configuration software.

i

i

The "Online values" icon must not be selected prior to starting the upload and the status line must show the control status "Control: Connected".

3. Click on the "Upload" icon in the toolbar.

- Click "Yes" in the dialog box to confirm the upload. Transmission from the safety module to the PC starts and a progress indicator is displayed in the MSIsafesoft configuration software status line.
- 5. If a project with the same name already exists on the PC, a prompt will appear where you must decide whether you want to overwrite the project which is already loaded or not. In this dialog box, click on the corresponding buttons:
 - "Yes" to overwrite the data of the existing project with that of the project which has iust been uploaded.
 - Overwriting means that the current data will be lost and cannot be recovered.
 - **"No"** to save the uploaded project under a different name or in a different directory. The "Save Project As" dialog box appears.
 - Here, select a directory, enter a file name, and click "Save".
- You are now asked to enter the project password.
 Once you have entered the password you can edit and check the project, load it to the
 - safety module, and start it up there as usual.

10.5 Function Test

\triangle	WARNING: Risk of injury or damage to equipment due to unintentional system states or incorrect responses		
	The safety module is in the commissioning phase, i.e., unintentional system states or incorrect responses cannot be ruled out. Operation is not safe.		
	 Make sure that the act of triggering the safety demand will not pose a risk for people or materials. 		
	• Do not enter any hazardous areas and ensure that no other persons can access the danger zone either.		
Validation	Once the project has been uploaded to the safety module, it is executed there following man- ual acknowledgment. You must perform a function test to ensure that the safety module and, thus, the safety logic and the entire wiring are functioning correctly.		
Online mode in MSIsafesoft	You can switch the MSIsafesoft configuration software to online mode for the function test. The online values are thereby read cyclically from the safety module and displayed in the connection editor and the hardware editor.		
Safety demand / monitor- ing signals	By activating the safe command devices, e.g., by pressing the E-Stop command device or opening the safety door, you trigger the safety demand. The behavior of the safety logic can now be analyzed precisely in the configuration software, as the connection editor displays the value of every signal "live" in online mode.		
	10.5.1 Performing function test with the help of online mode		
Connecting / logging in	 Connect the switched-on safety module to the configuration computer via the USB inter- face. 		
	 Start the MSIsafesoft configuration software and log in to the safety module. The status line in the MSIsafesoft configuration software now displays the following entry on the right-hand side. PLC: Logged on PLC: Connected 		

The system can only display online values if the project in the safety module and the project in the configuration system are identical.

If you have made a change to a project after commissioning, you must check the project and download it to the safety module again.

Only then can you display online values.

Note

i

For example, the following tasks are evaluated as changes in the project:

- Moving an object
- Making a change to the project documentation

3. Switch the MSIsafesoft configuration software to online mode by clicking on the "Display online values" icon in the toolbar.

1

Signal lines and function block connections are now displayed in the connection editor in different colors, according to their state (TRUE/FALSE), and together with the current values. The hardware editor also supports the function test through "lit" LEDs.

- 4. Trigger a safety demand via the safe command devices.
- 5. Monitor the response of the machine and the configuration via the online values in the connection editor.

Example:

Figure 10-8 Example of a function test for the safety system using the online mode of MSIsafesoft

11 Diagnosis

MSIsafesoft diagnosis

Information on hardware diagnosis, wiring checks and tool tips can be found in the help system of the MSIsafesoft configuration software.

Diagnosis via gateways

You can connect your MSI 100/200 system with gateways to a primary control. The reading out of the diagnosis is bus-specific.

Information on diagnosis via gateways can be found in the respective user manual of the gateway.

See www.leuze.com.

You can find suitable gateways for use with the MSI 100/200 system in the accessories chapter "Gateways" on page 118.

11.1 Diagnosis via LED indicators on the module

The following tables list the possible indicator combinations for the diagnostic and status indicators and their meanings. A distinction is made between slow flashing and fast flashing LEDs.

The LED symbols in the tables mean:

- LED is off
- -🔆 LED is on
- LED flashes: slowly ≈ 2 Hz / quickly ≈ 6 Hz
- **S** If there is an **S** below an LED symbol, this LED indicator applies only for the MSI 100.
- M If there is an M below an LED symbol , this LED indicator applies only for the MSI 200.

PWR (green)	DATA (green)	ERR (red)	CONF (green)	IO I19	00 03	Meaning
•	•	•	•			Device is switched off No voltage supply at A1 and A2
¢	¢	¢	¢			Initialization phase after switching on or after restart- ing after the "Confirm" button has been pressed (maximum duration: 4 s)
¢	•	•	¢			Initial commissioning stateNo configuration data present on the AC-MSI-CFG1Download project with MSIsafesoft
×	•	¢	ф.			AC-MSI-CFG1 not present Insert AC-MSI-CFG1 and apply voltage supply
×	•	●	-☆ ≈ 2 Hz			Acknowledgment of new configuration required after download • Press the "Confirm" button on the device
¢.	•	•	~ ≈ 6 Hz			Acknowledgment of a new configuration required after transfer via AC-MSI-CFG1 →For sequence, see chapter 10.3 on page 84
×	\	•	- ☆ ≈ 2 Hz			Acknowledgment required after changing an extension devicePress the "Confirm" button on the device
×	•	•	•			MSI 100: Normal operation Configuration data present on the AC-MSI-CFG1 MSI 200: Normal operation without connected exten- sion devices (TBUS communication) Configuration data present on the AC-MSI-CFG1
×.	Ф	•	•			MSI 200: Normal operation with connected extension units (TBUS communication)
¢	● S M	¢	•			 Limited operation with error on at least one input/output Rectify the error Deactivate input/output Press the "Confirm" button on the device (duration: min. 15 s)
☆	•	- ≩ ≈ 6 Hz	•			Error has occurredRead out error code with MSIsafesoft

11.1.1 MSI 100 and MSI 200

Table 11-1	Diagnostic indicators for MSI 100 and MSI 200
------------	---

Diagnosis

PWR (green)	DATA (green)	ERR (red)	CONF (green)	10 119	00 03	Meaning	
¢	● S M	¢	•	÷¥ ≈6 Hz	•	Cross-circuit has occurred Check wiring of the peripherals Press the "Confirm" button (duration: 3 s) MSI 200: Only in combination with safe extension module.	
¢	● S M	¢	•	•	-¥¥ ≈6 Hz	 Short-circuit at safe output (GND was connected to a safe output) Press the "Confirm" button on the device (duration: min. 15 s) MSI 200: Only in combination with safe extension module. 	
\$	● s ☆M	¢	•	-¥ ≈ 6 Hz	•	 Short-circuit at clock output (GND was connected to a clock output). Rectify short circuit at clock output Press the "Confirm" button on the device (duration: min. 15 s) MSI 200: Only in combination with safe extension module. 	

Table 11-1	Diagnostic indicators for MSI 100 and MSI 200
	Blagheede maleadere fer mer ree and mer 200

LED	State		Meaning
For each input ("I0" to "I19")	•		No switching signal at the relevant input
	\		Switching signal active at the input
	*	Long ON Short OFF	Wiring check at an active input or antivalent input
	*	Long OFF Short ON	Wiring check at an inactive input or antivalent input
For each output ("O0" to "O3")	•		Output is not active
(,	¢		Output is active
	*	Long ON Short OFF	Wiring check at an active output
	*	Long OFF Short ON	Wiring check at an inactive output

Table 11-2 Status indicators of the safe inputs and outputs for MSI 100 and MSI 200

11.1.2 MSI-EM200-8I4IO

Table 11-3	Diagnostic indicators for MSI-EM200-8I4IO			
PWR (green)	ERR (red)	Meaning		
•	•	Device is switched off, no voltage supply at 24 V/0 V or MSI-TBUS		
×.	¢	Initialization phase after power up (maximum duration: 4 s).		
Ф	•	Normal operation		
¢	ţ,	 Limited operation with error on at least one input/output Rectify the error Deactivate input/output Press the "Confirm" button on the MSI 200 base device (duration: min. 15 s) A flashing LED at an input or output signals an error affecting the 		
×	- ≩ ≈ 6 Hz	corresponding signal (see Table 11-4). Error has occurred Read out error code with MSIsafesoft		

Table 11-3	Diagnostic indicators	for MSI-E
	Diagnostic indicators	

Table 11-4 Status indicators for MSI-EM200-8I4IO safe inputs and outputs

LED	State	Meaning
For each input ("I4" to "I11") and for "IO0" to	•	No switching signal at the relevant input
"IO3", if these are configured as safe inputs	ф	Switching signal active at the input
	Long ON Short OFF	Wiring check at an input or antivalent input
For "IO0" to "IO3", if these are configured as safe out-	•	Output is not active
puts	ф	Output is active
	Long ON Short OFF	Wiring check at an output

11.1.3 MSI-EM200-4RO

Table 11-5	11-5 Diagnostic indicators for MSI-EM200-4RO				
PWR (green)	ERR (red)	Meaning			
•	•	Device is switched off, no voltage supply at 24 V/0 V or MSI-TBUS			
Ф	¢	Initialization phase after power up (maximum duration: 4 s).			
×.	•	Normal operation			
×	÷.	 Limited operation with error on at least one output Rectify the error Deactivate output Press the "Confirm" button on the MSI 200 base device (duration: min. 15 s) A flashing LED at an output signals an error (see Table 11-6). 			
Ċ.	- ir f ≈ 6 Hz	Error has occurredRead out error code with MSIsafesoft			

Table 11-5	Diagnostic indicators for	•
	Diagnostic indicators id	л

Table 11-6 Status indicators of the safe outputs for MSI-EM200-4RO

LED	State	Meaning
For "O0" to "O3"	•	Output is not active
	Ф	Output is active
	Long ON Short OFF	Wiring check at an output

12 Problems and solutions

This chapter contains a list of possible problems that may occur when working with the configuration software and the safety modules (MSI 100 and MSI 200) as well as with the safe extension modules (MSI-EM200-8I4IO and MSI-EM200-4RO). The following descriptions are divided into categories corresponding to the different sections of the configuration software.

12.1 General

Table 12-1 Solutions for general problems

Problem	Solution	
The user program cannot be downloaded from the configura- tion software to the control / the control hangs, whereby a sys- tem utilization < 100% is simultaneously displayed in the sta- tus bar in the lower right.	Please contact Leuze electronic technical support. We can support you with the optimization of memory usage. See also "Downloading configuration from the MSIsafesoft configura- tion software" on page 80.	
When the MSIsafesoft safe configuration software was launched, the installation check identified a faulty system file. A corresponding message window is displayed.	Uninstall the safe configuration software, then reinstall it by running the setup program from the installation CD.	
The test routine for the operating system has determined that you are trying to launch the MSIsafesoft configuration software on an operating system that is not supported.	Install an operating system supported by the MSIsafesoft configuration software (see "System requirements for the MSIsafesoft configuration software" on page 117) or consult with technical support to determine whether a newer version of MSIsafesoft is available that supports your current operat- ing system.	
An error has occurred (accompanied by a corresponding message), which cannot be removed using any of the measures described here.	Please contact Leuze electronic technical support.	
The safe MSIsafesoft configuration software or one of its functions is not behaving as described in the user documen- tation or the help system.	Please contact Leuze electronic technical support.	

12.2 Graphical connection editor

Table 12-2	Solutions for problems with the graphical connection editor
------------	---

Problem	Solution
You have attempted to open a project, but the safety logic could not be loaded due to a checksum error.	The project concerned is damaged and can no longer be used.
A corresponding message window is displayed.	Use the latest backup copy of the project (as described in the help system under "Zipping and extracting projects").
	If the problem persists, please contact Leuze electronic technical support.
During editing, a message window appears where the con- nection editor reports damaged data, a sporadic error or a	The project is closed automatically. You do not have the opportunity to save the most recently made changes.
systematic error.	If the problem persists when the project is reopened, please contact Leuze electronic technical support.

12.3 Configuration editor

Table 12-3	Solutions	for prob	lems with	the cor	figuration	editor

Problem	Solution	
You have attempted to open the configuration editor, but the data could not be loaded due to a checksum error.	The project can no longer be used, as the configuration data cannot be deleted.	
A corresponding message window is displayed.	Use the latest backup copy of the project (as described in the help system under "Zipping and extracting projects").	
The configuration editor responds unexpectedly to an entry in the parameter table, e.g., by displaying something other than what has been entered or selected.	Undo the last entry (by pressing <ctrl>+<z>), then repeat the entry.</z></ctrl>	
This may be traced back to a sporadic error or a systematic error.	technical support.	
During editing, a message window appears in which the configuration editor reports damaged data, a sporadic error	The project is closed automatically. You do not have the opportunity to save the most recently made changes.	
or a systematic error.	If the problem persists when the project is reopened, please contact Leuze electronic technical support.	

12.4 Online communication between MSIsafesoft and the safety module

 Table 12-4
 Solutions for communication problems between MSIsafesoft and the safety module

Problem	Solution
A connection cannot be established to the safety module.	Proceed as follows:
The status line does not display a status for the safety module ("Timeout", "No project" or "Connected"; see information under the diagram below).	Remove the USB connecting cable from the PC and safety controller, then reinsert it.
The status line looks like this, for example:	
Project: Read/Write	Is a module status displayed in the status bar *? No
	Insert the USB cable in a different USB connection on your PC.
	Is a module status displayed in the status bar *? In the status bar *? In the status bar *? In the status bar *? In the status bar *?
	No
	Try to establish a USB connection to another safety controller that is not currently in use.
	Is a module status
	displayed in the status bar *?
	No
	Try to establish the connection using another USB cable.
	Is a module status displayed in the status bar *? Use the functioning cable.
	No
	Please contact our technical support team.
	* Possible module status on existing connection:
	Controller: Timeout Temporary during initialization
	Controller: Connected Download project

Problem	Solution
Transmission has been interrupted during the download pro-	1. Start transmission again.
cedure.	 If the download fails once more, remove the USB con- necting cable from the interface on the configuration computer and reinsert it.
	 Once the safety module has been detected correctly (see display in the status line), restart the download proce- dure.
Following successful project download, the MSIsafesoft safe	Proceed as follows:
configuration software identifies that the checksum of the project on the safety module does not match that of the project on the PC. A corresponding message window is displayed.	Download the project to the safety controller again and acknowledge by pressing the "Confirm" button.
	Checksum error still indicated? Ves
	Download the project to another safety controller that is not currently in use.
	Checksum error still indicated? Ver
	l res
	Please contact our technical support team.

 Table 12-4
 Solutions for communication problems between MSIsafesoft and the safety module

12.5 Communication between the safety module and the safe extension module

Table 12-5 Solutions for communication problems between safety module and safe extension module

Problem	Solution
Communication between the safety module and the safe extension module via the DIN rail connector (MSI-TBUS) has been interrupted. The "Data" LED on the safety module does not illuminate.	Check whether all safe extension modules are correctly con- nected to the safety module. A connection is correct if there is a MSI-TBUS male connector under each extension module and the plug-in connection has been made properly (the module must snap into place).
	Check whether the power supply at each extension module has been connected and switched on correctly.

12.6 Safety module messages

 Table 12-6
 Solutions for messages from the safety module

Problem	Solution
Following acknowledgment of the newly loaded configura- tion, the safety module is not initialized correctly ("Control: Error" is displayed in the status line and flashing "ERR" status indicator on the safety module).	 Switch the safety module off and on again. Download the project to the safety module again and acknowledge the new configuration by pressing the "Confirm" button on the device. If the problem persists, please contact our technical sup- port team
The safety module reports an internal error.	Please contact Leuze electronic technical support.

13 Maintenance, repair, decommissioning and disposal

13.1 Maintenance

The modules of the MSI 100/200 system are maintenance-free. Depending on the application and the connected peripherals, the function of the peripheral devices and the safety chain may need to be tested periodically.

Service the connected peripheral devices (e.g., light barriers) acc. to manufacturer's specifications.

The mission time and the proof test interval at high or low demand rate for the modules of the MSI 100/200 system can be found in the technical data. See "Technical data and ordering data" on page 101.

13.2 Repair

Repair work or changes by the user to the module are prohibited. The housing must not be opened. If the housing is opened, the function of the MSI 100/200 modules is no longer guaranteed.

In case of failure, send the module to Leuze electronic or immediately contact Leuze electronicand request a member of service staff.

13.3 Decommissioning and disposal

Decommission according to the requirements of the machine or system manufacturer.

When decommissioning the MSI 100/200 system or parts of the system, handle the used modules as follows:

Further use of the module	Measure
The modules are still used as intended.	Observe requirements on storage and transport according to the technical data: see chapter 14 "Technical data and order- ing data" on page 101.
Modules are no longer used.	Dispose of the modules in accordance with environmental regulations. Ensure that the modules cannot be used again.

14 Technical data and ordering data

14.1 Technical data MSI 100 and MSI 200

Logic / supply A1/A2	
Rated control circuit supply voltage US	24 V DC (A1/A2)
Permissible range	18 V DC 30 V DC (incl. all tolerances, incl. residual ripple)
Rated control supply current IS	Typ. 110 mA
Limiting continuous current	Max. 6 A (for looped-through current paths A1/A1 and A2/A2, see "Double terminal con- tacts A1/A1 and A2/A2" on page 35)
Filter time	Typ. 20 ms (load-dependent, on voltage dips for $\mathrm{U}_{S}\mathrm{)}$
Status indicator	3 x green LEDs
	1 x red LED
Protective circuit	Yes, within the scope of the operating voltage limits
Safe digital inputs I0 to I19	
Quantity	10 (two-channel, up to SIL 3)
	20 (one-channel, up to SIL 2)
Туре	digital, type HTL
Input voltage range "0" signal	0 V DC 5 V DC (for safe off)
Input voltage range "1" signal	11 V DC 30 V DC
Typical current consumption at U _S	4 mA
Maximum total cable length	2000 m
Status indicator	20 x green LEDs (1 LED per input)
Safe digital outputs O0 to O3 and ground-switching output	uts O0- and O1-
Quantity (type)	4 (safe semiconductor outputs, up to Cat. 4 in accordance with EN ISO 13849-1)
	2 (ground-switching outputs)
Nominal voltage	24 V DC (supply via 24V/0V)
Permissible range	18 V DC 30 V DC (incl. all tolerances, incl. residual ripple)

WARNING: Loss of the safety function

The use of unsuitable voltage supplies and the incorrect connection of the voltage supply can result in the loss of the safety function.

- Only use power supply units with safe insulation and SELV/PELV in accordance with EN 50178 / VDE 0160.
- Connect the output-side GND connection of the power supply unit to the functional earth (FE) of the system.

<u>.</u>

Safe digital outputs O0 to O3 and ground-switching outputs O0- and O1-

Limiting continuous current	2 A (each channel, see Derating) 2 A (total current of all outputs)
Maximum output voltage in low state	< 5 V
Maximum leakage current in low state	2 mA

WARNING: Loss of the safety function

Switching of the load at maximum leakage current can lead to the loss of the safety function.

- Note that the load does not switch at this current and must not remain in the switched-on state.
- Take this into account when selecting the actuator.

Load	
Capacitive ¹	Max. 1 µF (electronic components)
Inductive ²	- (see protective circuit)
Test pulses	< 1 ms
Protective circuit	Yes, within the scope of the operating voltage limits
Short circuit protected	Yes
Status indicator	4 x green LEDs (1 LED per output)

¹ When using electromechanical components (e.g., contactors), the capacitive load can be disregarded.

² Use a suitable and effective protective circuit on inductive loads.

Clock outputs T0 and T1	
Quantity	2
Туре	Digital
Voltage	24 V DC (supply via 24V/0V)
Limiting continuous current	100 mA
Test pulses	< 1 ms
Short circuit protected	Yes
Signal outputs M0 to M3	
Quantity	4
Туре	Digital
Voltage	24 V DC (supply via 24V/0V)
Limiting continuous current	100 mA
Short circuit protected	Yes
Times	
Reaction time	Max. 30 ms (plus reaction time of MSI-EM200-4RO) See appendix "Switch-off time of the MSI 100/200 system" on page 124.
Recovery time	< 10 s

General specifications				
Nominal operating mode		100% ED		
Degree of protection in accordance with VDE 0470 part 1 Housing Connection terminals Installation location		IP20 IP20 Min, IP54		
Mounting type		DIN rail mounting		
Installation position		On horizontal DIN rail		
Design of housing		Unreinforced polyamide F	Unreinforced polyamide PA, yellow	
Air and creepage distances between the circuits		Acc. to EN 50178		
Degree of contamination		2		
Overvoltage category		Ш		
Maximum power loss at rated conditions		$\begin{array}{l} 6372 \text{ mW} \\ (at a = 20, b = 2, c = 4, d \\ I_{Out/GND} = 2 \text{ A}, I_{Out/Out} = 2 \\ \text{See appendix "Calculatio} \end{array}$	= 2, e = 2, I _{Clock} = 100 mA, I _{Signal} = 100 mA, 2 A) n of the power loss" on page 120	
Maximum number of safe extension modules		10		
Maximum number of non-safe extension devices (gateways) in the MSI 100/200 system		1		
Maximum continuous current via MSI-TBUS		4 A		
Dimensions and weight				
	Screw connection		Spring-cage connection	
Width / height / depth	67.5 mm / 114.5 mm / 99	mm	67.5 mm / 114.5 mm / 112 mm	
Weight with plugs	Approx. 154 g		Approx. 154 g	
Connection data				
	Screw connection		Spring-cage connection	
Conductor cross-section (rigid/flexible)	0.2 mm² 2.5 mm² AWG 24 12		0.2 mm² 1.5 mm² AWG 24 16	
Stripped length	7 mm		8 mm	
Screw thread	M3		-	
Tightening torque	0.5 Nm 0.6 Nm 5 lb in 7 lb in		-	

UL note:

i

To maintain UL approval, use copper cables that are designed for operating temperatures of > 75 °C.

Environmental conditions	
Ambient temperature	
Operation	- 20 °C + 55 °C (see Derating)
Storage/transport	- 20 °C + 70 °C
Air humidity	
Operation	75% (average, 85% occasionally)
Storage/transport	75% (average, 85% occasionally)
Air pressure	
Operation	70 kPa 108 kPa (up to 3000 m above sea level)
Storage/transport	66 kPa 108 kPa (up to 3500 m above sea level)
Operation altitude	Max. 2000 m above sea level
	See appendix "Use of MSI 100/200 modules at altitudes above 2000 m above sea level" on page 125
Shock	10g Δt = 11 ms (three shocks in each spatial direction)
	10g Δt = 16 ms (continuous shock; 1000 shocks in each spatial direction)
Vibration (operation)	2g

Safety-related characteristic parameters - high demand

	With one-channel configuration	With two-channel configuration
Stop category acc. to IEC 60204	0	0
Category in accordance with EN ISO 13849-1	2	4
Performance Level (PL) in accordance with EN ISO 13849-1	d	e
SILCL according to EN 62061	2	3
Mission time	240 months	240 months

Safety-related characteristic parameters for IEC 61508 - high demand

	With one-channel configuration	With two-channel configuration
Device type	E	3
HFT	0	1
SIL	2	3
PFH _D	16.1 x 10 ⁻⁹ (MSI 100)	16.1 x 10 ⁻⁹ (MSI 100)
	17.1 x 10 ⁻⁹ (MSI 200)	17.1 x 10 ⁻⁹ (MSI 200)
Request rate	< 12 months	< 12 months
Proof test interval	240 months	240 months
Mission time	240 months	240 months

Substitute depiction as 1001 structure for IEC 61508 – high demand (relevant characteristic values for the process industry)

	With one-channel configuration	With two-channel configuration
Device type	В	В
HFT	0	0
SIL	2	3
Safe failure fraction (SFF)	99.81 %	99.81 %
λSD	0 FIT	0 FIT
λSU	1282 FIT	1282 FIT
λDD	459 FIT	459 FIT
λDU	3.39 FIT	3.39 FIT
λtotal	1745 FIT	1745 FIT
MTBF	64.78 years (for MTTR = 8 h)	64.78 years (for MTTR = 8 h)
PFH _D	3.39 x 10 ⁻⁹	3.39 x 10 ⁻⁹

Safety-related characteristic parameters for IEC 61508 – low demand		
	With one-channel configuration	With two-channel configuration
Device type	E	3
HFT	0	1
SIL	2	3
PFD _{avg}	2.99 x 10 ⁻⁴	2.99 x 10 ⁻⁴
Proof test interval	240 months	240 months
Mission time	240 months	240 months

Substitute depiction as 1001 structure for IEC 61508 – low demand (relevant characteristic values for the process industry)

	With one-channel configuration	With two-channel configuration
Device type	В	В
HFT	0	0
SIL	2	3
Safe failure fraction (SFF)	99.84 %	99.84 %
λSD	0 FIT	0 FIT
λSU	1638 FIT	1638 FIT
λDD	505 FIT	505 FIT
λDU	3.39 FIT	3.39 FIT
λtotal	2146 FIT	2146 FIT
MTBF	64.36 years (for MTTR = 8 h)	64.36 years (for MTTR = 8 h)
PFD _{avg}	1.49 x 10 ⁻⁵ (for T1 = 1 year)	1.49 x 10 ⁻⁵ (for T1 = 1 year)

Max. 3 (ref. IEC 61508)

Safety-related characteristic parameters for EN 50156-2

SIL

Derating

14.2 Technical data MSI-EM200-8I4IO

Logic / supply	
Rated control circuit supply voltage U _S Permissible range	24 V DC (supply via MSI-TBUS) 18 V DC 30 V DC (incl. all tolerances, incl. residual ripple)
Rated control supply current I _S	(supply via MSI-TBUS) Typ. 51.6 mA (no inputs and outputs set, A1/A2 open) Typ. 66 mA (all inputs and safe outputs set)
Filter time	Typ. 20 ms (load-dependent, on voltage dips for $U_S)$
Status indicator	1 x green LED 1 x red LED
Protective circuit	Yes, within the scope of the operating voltage limits
Safe digital inputs IO0 to IO3 (if configured) and I4 to I11	
Quantity	12 (4 of which are configurable as input or output)
Туре	Digital
Input voltage range "0" signal	0 V DC 5 V DC (for safe off)
Input voltage range "1" signal	11 V DC 30 V DC
Typical current consumption at U _S	4 mA
Maximum total cable length	2000 m
Error detection time with 1-channel structure	<1s
Status indicator	12 x green LEDs
Safe digital outputs IO0 to IO3 (if configured)	
Quantity	4 (if the configurable inputs/outputs are used as outputs)
Туре	Digital
Nominal voltage	24 V DC (supply via A1/A2)
Permissible range	18 V DC 30 V DC (incl. all tolerances, incl. residual ripple)

WARNING: Loss of the safety function

The use of unsuitable voltage supplies and the incorrect connection of the voltage supply can result in the loss of the safety function.

- Only use power supply units with safe insulation and SELV/PELV in accordance with EN 50178 / VDE 0160.
- Connect the output-side GND connection of the power supply unit to the functional earth (FE) of the system.

Safe digital outputs IO0 to IO3 (if configured)

Limiting continuous current	4 x 0.5 A (see Derating)
Load	
Capacitive ¹	Max. 1 µF (electronic components)
Inductive ²	- (see protective circuit)
Test pulses	< 1 ms
Protective circuit	Yes, within the scope of the operating voltage limits
Short circuit protected	Yes
Status indicator	4 x green LEDs

¹ When using electromechanical components (e.g., contactors), the capacitive load can be disregarded.

² Use a suitable and effective protective circuit on inductive loads.

Clock/signal outputs TM0 and TM1				
Quantity	2			
Туре	Digital			
Nominal voltage	24 V DC (supply via A1/A2)			
Limiting continuous current	50 mA			
Test pulses	~ 1 ms			
Short circuit protected	Yes			
Times				
Reaction time	Max. 30 ms (plus reaction time MSI-EM200-4RO)			
	See appendix "Switch-off time of the MSI 100/200 system" on page 124.			
Recovery time	< 10 s			
General specifications				
Nominal operating mode	100% ED			
Degree of protection in accordance with VDE 0470 part 1				
Housing	IP20			
Connection terminals	IP20			
Installation location	Min. IP54			
Mounting type	DIN rail mounting			
Installation position	On horizontal DIN rail			
Housing material	Unreinforced polyamide PA, yellow			
Air and creepage distances between the circuits	Acc. to EN 50178			
Degree of contamination	2			
Overvoltage category	III			
Maximum power loss at rated conditions	2323 mW			
	(with f = 8, g = 2, h = 4, I_{Clock} = 50 mA, $I_{Out/GND}$ = 500 mA)			
	See appendix "Calculation of the power loss" on page 120			
General specifications				
---	------------------------------	--------------------------------------	------------------------------	--
Maximum number of safe extension modules in the MSI 100/200 system		10		
Maximum number of non-safe extension devices (gateways) in the MSI 100/200 system		1		
Maximum continuous current via MSI-TBUS		4 A		
Dimensions and weight				
	Screw connection		Spring-cage connection	
Width / height / depth	22.5 mm / 99 mm / 114.5	mm	22.5 mm / 112 mm / 114.5 mm	
Weight with plugs	Approx. 130 g		Approx. 130 g	
Dimensions and connection data				
	Screw connection		Spring-cage connection	
Conductor cross-section (rigid/flexible)	0.2 mm² 2.5 mm² AWG 24 12		0.2 mm² 1.5 mm² AWG 24 16	
Stripped length	7 mm		8 mm	
Screw thread	M3		-	
Tightening torque	0.5 Nm 0.6 Nm		-	
	5 lb in 7 lb in			
UL note: To maintain UL approval, use copper cables that are designed for operating temperatures of > 75 °C.				
Environmental conditions				
Ambient temperature				
Operation		$20^{\circ}C \pm 55^{\circ}C$ (coo D	(orating)	

Operation Storage/transport	- 20 °C + 55 °C (see Derating) - 20 °C + 70 °C
Air humidity Operation Storage/transport	75% (average, 85% occasionally) 75% (average, 85% occasionally)
Air pressure Operation Storage/transport	70 kPa 108 kPa (up to 3000 m above sea level) 66 kPa 108 kPa (up to 3500 m above sea level)
Operation altitude	Max. 2000 m above sea level See appendix "Use of MSI 100/200 modules at altitudes above 2000 m above sea level" on page 125
Shock	10g Δt = 11 ms (three shocks in each spatial direction) 10g Δt = 16 ms (continuous shock; 1000 shocks in each spatial direction)
Vibration (operation)	2g

Safety-related characteristic parameters - high demand

	With one-channel configuration	With two-channel configuration
Stop category acc. to IEC 60204	0	0
Category in accordance with EN ISO 13849-1	2	4
Performance Level (PL) in accordance with EN ISO 13849-1	d	e
SILCL according to EN 62061	2	3
Mission time	240 months	240 months

Safety-related characteristic parameters for IEC 61508 - high demand

	With one-channel configuration	With two-channel configuration
Device type	В	В
HFT	0	1
SIL	2	3
PFH _D	3.94 x 10 ⁻⁹	3.94 x 10 ⁻⁹
Request rate	< 12 months	< 12 months
Proof test interval	240 months	240 months
Mission time	240 months	240 months

Substitute depiction as 1001 structure for IEC 61508 – high demand (relevant characteristic values for the process industry)

	With one-channel configuration	With two-channel configuration		
Basis of calculation	For the configuration of up to 8 inputs and up to 4 outputs			
Device type	В	В		
HFT	0	0		
SIL	2	3		
Safe failure fraction (SFF)	99.88 %	99.88 %		
λSD	0 FIT	0 FIT		
λSU	1253 FIT	1253 FIT		
λDD	317 FIT	317 FIT		
λDU	1.91 FIT	1.91 FIT		
λtotal	1572 FIT	1572 FIT		
MTBF	71.91 years (for MTTR = 8 h) 71.91 years (for MTTR			
PFH _D	1.91 x 10 ⁻⁹	1.91 x 10 ⁻⁹		

Safety-related characteristic parameters for IEC 61508 – low demand					
	With one-channel configuration	With two-channel configuration			
Device type	В	В			
HFT	0	1			
SIL	2	3			
PFD _{avg}	2.1 x 10 ⁻⁴	2.1 x 10 ⁻⁴			
Proof test interval	240 months	240 months			
Mission time	240 months	240 months			

Substitute depiction as 1001 structure for IEC 61508 – low demand (relevant characteristic values for the process industry)

	With one-channel configuration	With two-channel configuration			
Basis of calculation	For the configuration of up to 8 inputs and up to 4 outputs				
Device type	В	В			
HFT	0	0			
SIL	2	3			
Safe failure fraction (SFF)	99.91 %	99.91 %			
λSD	0 FIT	0 FIT			
λSU	1729 FIT	1729 FIT			
λDD	349 FIT	349 FIT			
λDU	1.91 FIT	1.91 FIT			
λtotal	2080 FIT	2080 FIT			
MTBF	66.41 years (for MTTR = 8 h)	66.41 years (for MTTR = 8 h)			
PFD _{avg}	8.38 x 10 ⁻⁶ (for T1 = 1 year)	8.38 x 10 ⁻⁶ (for T1 = 1 year)			

Safety-related characteristic parameters for EN 50156-2

SIL

Max. 3 (ref. IEC 61508)

Derating

Figure 14-2 Derating curve MSI-EM200-8I4IO

Legend:

T_A = ambient temperature Current output Ox . .

14.3 Technical data MSI-EM200-4RO

Legie, supply	
Rated control circuit supply voltage U _S	24 V DC (supply via MSI-TBUS)
Permissible range	18 V DC 30 V DC (incl. all tolerances, incl. residual ripple)
Rated control supply current I _S	(Supply via MSI-TBUS)
	74 mA (at 24V DC, relay outputs set)
	54 mA (at 24 V DC, relay outputs not set)
Status indicator	1 x green LED
	1 x red LED
Protective circuit	Yes, within the scope of the operating voltage limits
Safe relay outputs O0 to O3	
Quantity	4 (one-channel)
	2 (two-channel, pairwise wiring)
Info: The pairwise wiring of the relay outputs corres	ponds to the factory settings.
Pair 1: 13/14 and 23/24 (bridge between contacts 2	3/23)
Pair 2: 33/34 and 43/44 (bridge between contacts 3	33/43)
Туре	Relay contacts safety-related normally open contacts
	Relay contacts, safety related normally open contacts
Contact material	AgSnO ₂ (from HW03)
Contact material	AgSnO ₂ (from HW03) AgCuNi + 0.2 - 0.4 μm Au (up to HW02)
Contact material Switching voltage	AgSnO ₂ (from HW03) AgCuNi + 0.2 - 0.4 μm Au (up to HW02) Min. 12 V AC/DC (from HW03)
Contact material Switching voltage	AgSnO ₂ (from HW03) AgCuNi + 0.2 - 0.4 μm Au (up to HW02) Min. 12 V AC/DC (from HW03) Min. 5 V AC/DC (up to HW02)
Contact material Switching voltage	AgSnO ₂ (from HW03) AgCuNi + 0.2 - 0.4 μm Au (up to HW02) Min. 12 V AC/DC (from HW03) Min. 5 V AC/DC (up to HW02) Max. 250 V AC/DC
Contact material Switching voltage Limiting continuous current	AgSnO ₂ (from HW03) AgCuNi + 0.2 - 0.4 μm Au (up to HW02) Min. 12 V AC/DC (from HW03) Min. 5 V AC/DC (up to HW02) Max. 250 V AC/DC 4 A (see derating)
Contact material Switching voltage Limiting continuous current Switching current	AgSnO ₂ (from HW03) AgCuNi + 0.2 - 0.4 μm Au (up to HW02) Min. 12 V AC/DC (from HW03) Min. 5 V AC/DC (up to HW02) Max. 250 V AC/DC 4 A (see derating) Min. 3 mA (from HW03) Min. 5 mA (up to HW02)
Contact material Switching voltage Limiting continuous current Switching current	AgSnO ₂ (from HW03) AgCuNi + 0.2 - 0.4 μm Au (up to HW02) Min. 12 V AC/DC (from HW03) Min. 5 V AC/DC (up to HW02) Max. 250 V AC/DC 4 A (see derating) Min. 3 mA (from HW03) Min. 5 mA (up to HW02)
Contact material Switching voltage Limiting continuous current Switching current Switching power Life synaptency mechanical	AgSnO ₂ (from HW03) AgCuNi + 0.2 - 0.4 μ m Au (up to HW02) Min. 12 V AC/DC (from HW03) Min. 5 V AC/DC (up to HW02) Max. 250 V AC/DC 4 A (see derating) Min. 3 mA (from HW03) Min. 5 mA (up to HW02) Min. 60 mW
Contact material Switching voltage Limiting continuous current Switching current Switching power Life expectancy, mechanical Output guarding	AgSnO ₂ (from HW03) AgCuNi + 0.2 - 0.4 μm Au (up to HW02) Min. 12 V AC/DC (from HW03) Min. 5 V AC/DC (up to HW02) Max. 250 V AC/DC 4 A (see derating) Min. 3 mA (from HW03) Min. 5 The form HW03) Min. 60 mW 10 x 10 ⁶ switching cycles 6 A cl (co)
Contact material Switching voltage Limiting continuous current Switching current Switching power Life expectancy, mechanical Output guarding	AgSnO ₂ (from HW03) AgCuNi + 0.2 - 0.4 µm Au (up to HW02) Min. 12 V AC/DC (from HW03) Min. 5 V AC/DC (up to HW02) Max. 250 V AC/DC 4 A (see derating) Min. 3 mA (from HW03) Min. 5 mA (up to HW02) Min. 60 mW 10 x 10 ⁶ switching cycles 6 A gL/gG 4 A gL/gG (for low-demand applications)
Contact material Switching voltage Limiting continuous current Switching current Switching power Life expectancy, mechanical Output guarding Status indicator	AgSnO ₂ (from HW03) AgCuNi + 0.2 - 0.4 µm Au (up to HW02) Min. 12 V AC/DC (from HW03) Min. 5 V AC/DC (up to HW02) Max. 250 V AC/DC 4 A (see derating) Min. 3 mA (from HW03) Min. 5 mA (up to HW02) Min. 60 mW 10 x 10 ⁶ switching cycles 6 A gL/gG 4 A gL/gG (for low-demand applications) 4 x green LEDs
Contact material Switching voltage Limiting continuous current Switching current Switching power Life expectancy, mechanical Output guarding Status indicator Signal outputs M0 to M3	AgSnO ₂ (from HW03) AgCuNi + 0.2 - 0.4 µm Au (up to HW02) Min. 12 V AC/DC (from HW03) Min. 5 V AC/DC (up to HW02) Max. 250 V AC/DC 4 A (see derating) Min. 3 mA (from HW03) Min. 5 mA (up to HW02) Min. 60 mW 10 x 10 ⁶ switching cycles 6 A gL/gG 4 A gL/gG (for low-demand applications) 4 x green LEDs
Contact material Switching voltage Limiting continuous current Switching current Switching power Life expectancy, mechanical Output guarding Status indicator Signal outputs M0 to M3 Quantity	AgSnO ₂ (from HW03) AgCuNi + 0.2 - 0.4 µm Au (up to HW02) Min. 12 V AC/DC (from HW03) Min. 5 V AC/DC (up to HW02) Max. 250 V AC/DC 4 A (see derating) Min. 3 mA (from HW03) Min. 5 mA (up to HW02) Min. 60 mW 10 x 10 ⁶ switching cycles 6 A gL/gG 4 A gL/gG (for low-demand applications) 4 x green LEDs
Contact material Switching voltage Limiting continuous current Switching current Switching power Life expectancy, mechanical Output guarding Status indicator Status indicator Quantity Type	AgSnO ₂ (from HW03) AgCuNi + 0.2 - 0.4 µm Au (up to HW02) Min. 12 V AC/DC (from HW03) Min. 5 V AC/DC (up to HW02) Max. 250 V AC/DC 4 A (see derating) Min. 3 mA (from HW03) Min. 5 mA (up to HW02) Min. 60 mW 10 x 10 ⁶ switching cycles 6 A gL/gG 4 A gL/gG (for low-demand applications) 4 x green LEDs 4 Digital

Signal outputs M0 to M3	
Limiting continuous current	50 mA
Protective circuit	Yes, within the scope of the operating voltage limits
Short circuit protected	Yes
Times	
Reaction time	Max. 50 ms See appendix "Switch-off time of the MSI 100/200 system" on page 124.
Recovery time	< 10 s
General specifications	
Nominal operating mode	100% ED
Degree of protection in accordance with VDE 0470 part 1 Housing Connection terminals Installation location	IP20 IP20 Min. IP54
Mounting type	DIN rail mounting
Installation position	On horizontal DIN rail
Housing material	Unreinforced polyamide PA
Air and creepage distances between the circuits	Acc. to DIN EN 50178
Rated insulation voltage	250 V AC
Rated surge voltage / insulation	 4 kV / basic insulation of the output contact current paths (13/14, 23/24, 33/34, 43/44) between one another 6 kV / safe insulation, reinforced insulation of the output contact current paths (13/14, 23/24, 33/34, 43/44) from the other circuits
Degree of contamination	2
Overvoltage category	III
Maximum power loss at rated conditions	Ambient temperature of up to 40°C: 3932 mW (with m = 4, n = 4, I _{Load} = 4 A, I _{Signal} = 50 mA) Ambient temperature of up to 55°C (derating observed): 1532 mW (with m = 4, n = 4, I _{Load} = 1 A, I _{Signal} = 50 mA) See appendix "Calculation of the power loss" on page 120
Maximum number of safe extension modules with MSI 200	10
Maximum number of non-safe extension devices (gateways) in the MSI 100/200 system	1
Maximum continuous current via MSI-TBUS	4 A

Dimensions and weight					
	Screw connection		Spring-cage connection		
Width / height / depth	22.5 mm / 99 mm / 114.5 mm		22.5 mm / 112 mm / 114.5 mm		
Weight with plugs	Approx. 140 g		Approx. 140 g		
Dimensions and connection data					
	Screw connection		Spring-cage connection		
Conductor cross-section (rigid/flexible)	0.2 mm² 2.5 mm² AWG 24 12		0.2 mm² 1.5 mm² AWG 24 16		
Stripped length	7 mm		8 mm		
Screw thread	M3		-		
Tightening torque	0.5 Nm 0.6 Nm 5 lb in 7 lb in				
To maintain UL approval, use copper cables that are designed for operating temperatures of > 75 °C.					
Environmental conditions	Environmental conditions				
Ambient temperature Operation Storage/transport		- 20 °C + 55 °C (see D - 20 °C + 70 °C	Perating)		
Air humidity Operation Storage/transport		75% (average, 85% occa 75% (average, 85% occa	sionally) sionally)		
Air pressure Operation Storage/transport		70 kPa … 108 kPa (up to 66 kPa … 108 kPa (up to	3000 m above sea level) 3500 m above sea level)		
Operation altitude		Max. 2000 m above sea level See appendix "Use of MSI 100/200 modules at altitudes above 2000 m above sea level" on page 125			
Shock	10g ∆t = 11 ms (th 10g ∆t = 16 ms (cc		ocks in each spatial direction) us shock; 1000 shocks in each spatial direction)		
Vibration (operation)		2g			

Safety-related characteristic parameters - high demand

	With one-chann	el configuration	With two-channel configuration		
	From HW03 Up to HW02		From HW03	Up to HW02	
Stop category acc. to IEC 60204	0	0	0	0	
Category in accordance with EN ISO 13849-1	1	1	4	4	
Performance Level (PL) in accordance with EN ISO 13849-1	С	С	e ¹	e ¹	
SILCL according to EN 62061	1	1	3	3	
Mission time	240 months	240 months	240 months	240 months	

¹ For applications with PL e, it is necessary that the safety function be requested once per month.

Safety-related characteristic parameters for IEC 61508 – high demand							
	With one-channel configuration				With two-channel configura- tion		
	From HW03 Up to HW02		From HW03	Up to HW02			
HFT	0	0	0	0	1	1	
SIL	1	1	1	1	3	3	
PFH _D	3.67 x 10 ⁻⁷	5.5 x 10 ⁻⁷	1.41 x 10 ⁻⁷	1.0 x 10 ⁻⁷	7.3 x 10 ⁻¹⁰	7.3 x 10 ⁻¹⁰	
	(4 A DC13; 8760 switch- ing cycles/year)	(5 A AC15; 8760 switch- ing cycles/year)	(5 A DC13; 8760 switch- ing cycles/year)	(3 A AC15; 8760 switch- ing cycles/year)	(4 A DC13; 5 A AC15; 8760 switch- ing cycles/year)	(5 A DC13; 3 A AC15; 8760 switch- ing cycles/year)	
Request rate	< 12 months	< 12 months					
Proof test interval	240 months	240 months					
Mission time	240 months	240 months					

Substitute depiction as 1001 structure for IEC 61508 – high demand (relevant characteristic values for the process industry)

	With one-channel configuration		With two-chann	el configuration
	From HW03	Up to HW02	From HW03	Up to HW02
Calculated with	4 A DC13	5 A DC13	4 A DC13	5 A DC13
HFT	0	0	0	0
SIL	1	1	3	3
Safe failure fraction (SFF)	83.79 %	93.88 %	99.99 %	99.99 %
λSD	873 FIT	873 FIT	910 FIT	910 FIT
λSU	990 FIT	1259 FIT	2681 FIT	1781 FIT
λDD	33 FIT	33 FIT	23.75 FIT	21.51 FIT
λDU	367 FIT	141 FIT	0.17 FIT	0.13 FIT
λtotal	2263 FIT	2305 FIT	3615 FIT	2712 FIT
MTBF	49.94 years	49.02 years	31.26 years	41.67 years
	(for MTTR = 8 h)	(for MTTR = 8 h)	(for MTTR = 8 h)	(for MTTR = 8 h)
PFH _D	3.67 x 10 ⁻⁷	1.41 x 10 ⁻⁷	1.72 x 10 ⁻¹⁰	1.27 x 10 ⁻¹⁰

Safety-related characteristic parameters for IEC 61508 – low demand

	With one-channel configuration		With two-channel configuration	
	From HW03	Up to HW02	From HW03	Up to HW02
HFT	0	0	1	1
SIL	1	1	3	3
PFD _{avg}	4.35 x 10 ⁻³	4.35 x 10 ⁻³	1.18 x 10 ⁻⁴	1.18 x 10 ⁻⁴
Proof test interval	60 months	60 months	60 months	60 months
Mission time	240 months	240 months	240 months	240 months

Substitute depiction as 1001 structure for IEC 61508 – low demand (relevant characteristic values for the process industry)

	With one-channel configuration		With two-chann	el configuration
	From HW03	Up to HW02	From HW03	Up to HW02
HFT	0	0	0	0
SIL	1	1	3	3
Safe failure fraction (SFF)	94.26 %	94.26 %	99.88 %	99.88 %
λSD	873 FIT	873 FIT	910 FIT	910 FIT
λSU	2379 FIT	2379 FIT	3700 FIT	3700 FIT
λDD	32 FIT	32 FIT	21.18 FIT	21.18 FIT
λDU	200 FIT	200 FIT	5.45 FIT	5.45 FIT
λtotal	3484 FIT	3484 FIT	4637 FIT	4637 FIT
MTBF	32.44 years (for MTTR = 8 h)	32.44 years (for MTTR = 8 h)	24.37 years (for MTTR = 8 h)	24.37 years (for MTTR = 8 h)
PFD _{avg}	9.69 x 10 ⁻⁵ (for T1 = 1 year)	9.69 x 10 ⁻⁵ (for T1 = 1 year)	1.23 x 10 ⁻⁴ (for T1 = 1 year)	1.23 x 10 ⁻⁴ (for T1 = 1 year)

Safety-related characteristic parameters for EN 50156-2

SIL

Derating

Figure 14-3 Derating curve MSI-EM200-4RO

Max. 3 (ref. IEC 61508)

Legend:

T_A = ambient temperature

 I_L = current output O_x

Each contact can be loaded with up to 4 A at an ambient temperature of up to 40 °C.

At an ambient temperature of 55 $^{\circ}$ C, every contact can be loaded with 1 A, two contacts can be loaded with 1.4 A or one contact can be loaded with 2 A. i

14.4 Certifications

For the current certifications, go to <u>www.leuze.com</u>.

14.5 Conformity with EMC directive

Conformity with EMC directive 2014/30/EU				
Testing of interference rejection in acc. with DIN EN 61000-6-2				
Electrostatic discharge (ESD)	EN 61000-4-2 (IEC 61000-4-2)	Criterion B 4 kV contact discharge, 8 kV air discharge		
Electromagnetic fields	EN 61000-4-3 (IEC 61000-4-3)	Criterion A, field strength 10 V/m		
Fast transients (burst)	EN 61000-4-4 (IEC 61000-4-4)	Criterion B, test voltage 2 kV		
Transient overvoltage (surge)	EN 61000-4-5 (IEC 61000-4-5)	Criterion B DC voltage supply lines: 1 kV (asymmetric) Signal lines: 1 kV (asymmetric)		
Conducted disturbances	EN 61000-4-6 (IEC 61000-4-6)	Criterion A, test voltage 10 V		
Testing of the interference emission in accordance with DIN EN 61000-6-4				
Interference emission	EN 55016-1-2 EN 55016-2-1 EN 55016-2-3	Class A, industrial sector		

14.6 System requirements for the MSIsafesoft configuration software

Software prerequisites		
Supported operating systems	Windows 8 (32 or 64 bit) Windows 7 (32 or 64 bit) SP1 Windows XP SP3	
Supported browsers	Internet Explorer version 6 or higher	
Hardware prerequisites		
CPU	Pentium	2 GHz (recommended) / 1 GHz (minimum)
Main memory	Windows 7 / Windows 8 Windows XP	2 GB (recommended) / 1 GB (minimum) 1 GB (recommended) / 512 MB (minimum)
Hard disk	At least 250 MB free hard disk memory	
Drive	CD-ROM	
Operating units	Keyboard, mouse	
Monitor resolution	Minimum 800 x 600	
Other		
Basic functionality	Configuration of the MSI 100/200 safety	modules
Supported languages	German, English, Spanish, French, Italia	an

Part no.

14.7 Ordering data

14.7.1 MSI 100/200 modules

Description	Туре	Part no.	Unit
Safety modules			
Configurable safety module, non-expandable , 1x AC-MSI-CFG1 memory module included			
Module with screw connections	MSI101	547802	1
Module with spring-cage connections	MSI102	547812	1
Configurable safety module, expandable , DIN rail connector and 1x AC-MSI-CFG1 memory module included			
Module with screw connections	MSI201	547803	1
Module with spring-cage connections	MSI202	547813	1
Safe extension modules			
Configurable safe extension module with configurable inputs/outputs , DIN rail connector included			
Module with screw connections	MSI-EM201-8I4IO	547804	1
Module with spring-cage connections	MSI-EM202-8I4IO	547814	1
Configurable safe extension module with relay outputs, DIN rail connector included			
Module with screw connections			
Module with spring-cage connections	MSI-EM201-4RO	547805	1
	MSI-EM202-4RO	547815	1

14.7.2 Software

1

Make sure that you always use the latest software. The software is available for download free of charge on the Internet at <u>www.leuze.com</u>.

Туре

MSIsafesoft

Description

Configuration software for MSI 100/200 modules

14.7.3 Accessories

Description	Туре	Part no.	Unit
MSI 100/200 configuration package incl. MSIsafesoft configuration software, configuration cable (USB) and quick start guide	MSI-SWC1	547825	1
Memory module for MSI 100/200 system (included in the scope of delivery of the safety modules)	AC-MSI-CFG1	547820	10
USB connection cable , USB connector type A to USB connector type Mini-B; length: 1.5 m	KB USB A - USB miniB	50117011	1
DIN rail connector for safety relays, for supply / actuation / monitoring (depending on module)	AC-MSI-TCS	547821	10
DIN rail connector for connection with electronics housings	AC-MSI-TC	547823	10

14.7.4 Gateways

The following gateways are suitable for use with the MSI 100/200 system.

Description	Bus system	Туре	Part no.	Unit
Gateway for the connection of up to 32 INTERFACE system participants to a primary control. DIN	PROFIBUS DP	MSI-FB-PB101	547806	1

32 INTERFACE system participants to a primary control, E rail connector included

14.8 Documentation

Make sure that you always use the latest documentation This is available for download on the Internet at <u>www.leuze.com</u>.

A Technical appendix

A 1 Calculation of the power loss

The total power loss of a MSI 100/200 system is determined from the power loss of the logic, the power loss per connected input and per used clock or signal output as well as the power loss per used output.

If you use the MSI 200 safety module in combination with extension devices, the power loss of all connected extension devices is added as well.

Calculate the total power loss using the following formulas. The contact resistances of the connection terminals are ignored here.

A 1.1 Power loss for MSI 200 and MSI 100

Power loss of the logic

- for $U_{S(24V/0V)} = U_{S(A1/A2)} = 24 \text{ V DC}$

P_{Logic} = P_{24V/0V} + P_{A1/A2} = 310 mW + 770 mW = 1080 mW

Power loss per connected input

- for $U_{S(24V/0V)} = 24 \text{ V DC}$ $P_{Input} = 134 \text{ mW}$

Power loss per clock output

- for $U_{S(A1/A2)} = 24 \text{ V DC}$

 $P_{Clock} = I_{Clock}^2 * 60 \text{ m}\Omega$

Power loss per signal output

- for $U_{S(A1/A2)} = 24 \text{ V DC}$

 $P_{Signal} = I_{Signal}^2 * 60 \text{ m}\Omega$

Power loss per output Out / GND

- for $U_{S(24V/0V)} = 24 V DC$

 $\mathbf{P}_{\mathbf{Out/GND}} = \mathbf{I}_{\mathbf{Out/GND}^2} * 138 \text{ m}\Omega$

Power loss per output Out / Out

- for U_{S(24V/0V)} = 24 V DC

 $P_{Out/Out} = I_{Out/Out}^2 * 188 \text{ m}\Omega$

Total power loss

P_{Total} = P_{Logic} + a * P_{Input} + b * P_{Clock} + c * P_{Signal} + d * P_{Out/GND} + e * P_{Out/Out} + P_{Extensions} i.e.

 $\mathbf{P_{Total}} = 1080 \text{ mW} + a * 134 \text{ mW} + b * I_{Clock}^{2} * 60 \text{ m}\Omega + c * I_{Signal}^{2} * 60 \text{ m}\Omega + d * I_{Out/GND}^{2} \\ * 138 \text{ m}\Omega + e * I_{Out/Out}^{2} * 188 \text{ m}\Omega + P_{Extensions}$

Legend:

Р	Power loss in mW
U _S	Rated control circuit supply voltage assigned to the connections
I _{Clock}	Current drawn at a clock output
I _{Signal}	Current drawn at a signal output
I _{Out/GND}	Current drawn from an output with GND reference point of the load
I _{Out/Out}	Current drawn from an output with OUT reference point of the load
а	Number of used inputs
b	Number of used clock outputs
с	Number of used signal outputs
d	Number of used outputs with GND reference point of the load
е	Number of used outputs with OUT reference point of the load
P _{Extensions}	Sum of the power consumption of the extension devices with $U_{S(24V/0V)}$ from the TBUS (only relevant with MSI 200)

A 1.2 Power loss for MSI-EM200-8I4IO

Power loss of the logic

- for $U_{S(24V/0V)} = U_{S(A1/A2)} = 24 \text{ V DC}$ (via MSI-TBUS)

P_{Logic} = P_{24V/0V} + P_{A1/A2} = 450 mW + 77 mW = 617 mW

Power loss per connected input

- for $U_{S(A1/A2)}$ = 24 V DC

P_{Input} = 134 mW

Power loss per clock / signal output

- for $U_{S(24V/0V)} = 24 V DC$

 $P_{Clock} = I_{Clock}^2 * 350 \text{ m}\Omega$

Power loss per output Out / GND

```
- for U_{S(A1/A2)} = 24 \text{ V DC}
```

 $\mathbf{P}_{\mathbf{Out/GND}} = \mathbf{I}_{\mathbf{Out/GND}^2} * 96 \text{ m}\Omega + 134 \text{ mW}$

Total power loss

P_{Total} = P_{Logic} + f * P_{Input} + g * P_{Clock} + h * P_{Out/GND} i.e.

 $\mathbf{P_{Total}} = 617 \text{ mW} + \text{f} * 134 \text{ mW} + \text{g} * \text{I}_{\text{Clock}}^{2} * 350 \text{ m}\Omega \\ + \text{h} * (\text{I}_{\text{Out/GND}}^{2} * 96 \text{ m}\Omega + 134 \text{ mW})$

Legend:

Р	Power loss in mW
U _S	Rated control circuit supply voltage assigned to the connections
I _{Clock}	Current drawn at a clock output
I _{Out/GND}	Current drawn from an output with GND reference point
f	Number of used inputs
g	Number of used clock/signal outputs
h	Number of used outputs with GND reference point

A 1.3 Power loss for MSI-EM200-4RO

Power loss of the logic

- for $U_{S(24V/0V)} = U_{S(A1/A2)} = 24 \text{ V DC}$ (via MSI-TBUS)
- **P**_{Logic} = P_{24V/0V} + P_{A1/A2} = 480 mW + 30 mW = 510 mW

Power loss per signal output

- for $U_{S(A1/A2)} = 24 \text{ V DC}$
- $\mathbf{P_{Signal}} = I_{Signal}^2 * 100 \text{ m}\Omega$

Power loss per relay output

- for $U_{S(24V/0V)} = 24 \text{ V DC}$
- **P_{Load1}** = 55 mW

Power loss per relay output

- for U_{X3/X4} = 24 V DC
- $P_{Load2} = I_{Load} * 200 \text{ mV}$

Total power loss

 $P_{Total} = P_{Logic} + m * P_{Signal} + n * (P_{Load1} + P_{Load2})$ i.e.

 $P_{Total} = 510 \text{ mW} + I_{Signal}^2 * 100 \text{ m}\Omega + \text{n} * (55 \text{ mW} + I_{Load} * 200 \text{ mV})$

Legend:

Р	Power loss in mW
U _S	Rated control circuit supply voltage assigned to the connections
I _{Signal}	Current drawn at a signal output
I _{Load}	Load current switched at the relay output
m	Number of used signal outputs
n	Number of used relay outputs

A 2 Switch-off time of the MSI 100/200 system

Required switch-off time The required switch-off time is dependent on your safety application.

Actual switch-off time

The actual switch-off time for the safety function must always be less than the required switch-off time.

The actual switch-off time for the safety function $(t_{\mbox{\scriptsize SF}})$ is determined using the following formula:

 $t_{SF} = t_{S} + t_{MSI200} (+ t_{4RO}) + t_{A} + t_{STOP}$

Figure A-1 Sw

Switch-off time for the safety function

Legend:

t _S	Reaction time of the sensor/transducer
t _{MSI200}	Max. reaction time of the MSI 100/200 system
t _{4RO}	Max. reaction time of the MSI-EM200-4RO module
t _A	Reaction time of the actuator
t _{STOP}	Stopping time of the machine

Maximum response time

The maximum guaranteed reaction time (t_{MSI200}) of the MSI 100/200 system is 30 ms. The maximum reaction time t_{MSI200} applies independent of the number of used safe extension modules. An exception here is the MSI-EM200-4RO relay module.

When using one or more relay modules, the maximum reaction time of the MSI-EM200-4RO module (t_{4RO}) must be added once due to the mechanical release time of the relay. The maximum reaction time t_{4RO} is 50 ms.

A 3 Use of MSI 100/200 modules at altitudes above 2000 m above sea level

The following chapter describes the conditions for using modules of the MSI 100/200 system at altitudes above 2000 m above sea level.

i

Observe the respective, specific data (technical data, derating, etc.) of the used module. See "Technical data and ordering data" on page 101.

Use of the module at altitudes **above 2000 m above sea level to max. 4500 m above sea level** is possible under the following conditions:

Maximum ambient temperature

1. Determine the maximum ambient temperature for operation with the corresponding factor acc. to the following table.

Derating curve

2. If a derating is specified, shift all points of the derating curve by the corresponding factor according to the following table.

Operation altitude above sea level	Temperature derating factor
2000 m	1
2500 m	0.953
3000 m	0.906
3500 m	0.859
4000 m	0.813
4500 m	0.766

Switching voltage for relay outputs

3. Limit the maximum switching voltage for relay outputs acc. to the following table. Note the technical data of the device here.

Max. switching voltage acc. to the technical data of the device	Max. switching voltage when used at alti- tudes above 2000 m above sea level
< 150 V AC/DC	Max. switching voltage acc. to the technical data of the device remains valid
> 150 V AC/DC	Limited to max 150 V AC/DC

A 3.1 Example calculation

The following calculation and the depicted derating curve are an example for the use of an MSI 100/200 module at an altitude of 3,000 m above sea level.

Perform the actual calculation and the shift of the derating curve for the module you are using according to the technical data.

Chapter 1

B List of appendices

B.1 Figures

Chapter 2			
	Figure 2-1:	Typical structure of a safety system with MSI 200	15
	Figure 2-2:	Extension of the MSI 200 safety module	17
Chapter 3			
	Figure 3-1:	Screw terminals (left) and spring-cage terminals (right)	24
	Figure 3-2:	MSI 100 block diagram	24
	Figure 3-3:	MSI 200 block diagram	24
	Figure 3-4:	Possible operating modes (status) of MSI 100/200	26
	Figure 3-5:	MSI 100/200 operating and display elements	27
	Figure 3-6:	Status line in the MSIsafesoft safe configuration software (safety module already contains a configuration project)	29
	Figure 3-7:	AC-MSI-CFG1 with MSI 100/200 safety module	30
	Figure 3-8:	Signal connections MSI 100/200	31
Chapter 4			
	Figure 4-1:	Screw terminals (left) and spring-cage terminals (right)	36
	Figure 4-2:	MSI-EM200-8I4IO block diagram	37
	Figure 4-3:	Diagnostic and status indicators MSI-EM200-8I4IO	37
	Figure 4-4:	Signal connections MSI-EM200-8I4IO	38
Chapter 5			
	Figure 5-1:	Screw terminals (left) and spring-cage terminals (right)	42
	Figure 5-2:	MSI-EM200-4RO block diagram	43
	Figure 5-3:	Diagnostic and status indicators MSI-EM200-4RO	44
	Figure 5-4:	Signal connections MSI-EM200-4RO	45
Chapter 6			
	Figure 6-1:	Single-channel assignment of the inputs	49
	Figure 6-2:	Single-channel assignment of the inputs: external supply	50
	Figure 6-3:	Single-channel assignment of the inputs: external supply (OSSD)	51
	Figure 6-4:	Two-channel equivalent assignment of the inputs, supplied by T0 and T1 (both clocked)	52
	Figure 6-5:	Two-channel equivalent assignment of the inputs, external supply, cross circuit monitoring switched off	53
	Figure 6-6:	Two-channel equivalent assignment of the inputs, external supply (OSSD)	54
	Figure 6-7:	Two-channel antivalent assignment of the inputs, supplied by T0 and T1, cross circuit monitoring switched on	55
	Figure 6-8:	Two-channel antivalent assignment of the inputs, external supply	56

Example for the freewheeling circuit of an external relay57

Figure 6-9:

Figure 6-10:

▲ Leuze electronic

	Figure 6-11:	Two-channel assignment of the outputs	
	Figure 6-12:	Example for the freewheeling circuit of an external relay	60
	Figure 6-13:	Single-channel assignment of the relay outputs	60
	Figure 6-14:	Two-channel assignment of the relay outputs	61
Chapter 7			
	Figure 7-1:	Mounting DIN rail connectors	64
	Figure 7-2:	Mounting a MSI 100/200 module on the DIN rail	65
	Figure 7-3:	Connecting to screw terminals	66
	Figure 7-4:	Connecting to spring-cage terminals	66
	Figure 7-5:	Connecting the MSI 100/200 supply voltage	70
	Figure 7-6:	Connecting the supply voltage MSI-EM200-8I4IO and MSI-EM200-4RO	71
	Figure 7-7:	MSI 100/200 system voltage supply	72
Chapter 8			
Chapter 9			
	Figure 9-1:	Opening the help system in the MSIsafesoft configuration software	ə76
Chapter 10			
	Figure 10-1:	Flow chart: Example configuration and commissioning (1 of 3)	77
	Figure 10-2:	Flow chart: Example configuration and commissioning (2 of 3)	78
	Figure 10-3:	Flow chart: Example configuration and commissioning (3 of 3)	79
	Figure 10-4:	USB connection between PC and safety module	81
	Figure 10-5:	Dialog box following successful data transmission	
	Figure 10-6:	Confirming the configuration with the "Confirm" button	
	Figure 10-7:	Insert AC-MSI-CFG1	
	Figure 10-8:	Example of a function test for the safety system using the online Appendixmode of MSIsafesoft	
Chapter 11			
Chapter 12			
Chapter 13			
Chapter 14			
	Figure 14-1:	Derating curve MSI 100 and MSI 200	106
	Figure 14-2:	Derating curve MSI-EM200-8I4IO	
	Figure 14-3:	Derating curve MSI-EM200-4RO	116
Appendix A			
	Figure A-1:	Switch-off time for the safety function	124
	Figure 14-4:	Example of a shifted derating curve (red)	

Appendix B

Appendix C

	B.2	Tables
Chapter 1		
Chapter 2		
Chapter 3		
	Table 3-1:	MSI 100/200 LED diagnostic indicators27
	Table 3-2:	Module behavior in case of missing AC-MSI-CFG1
Chapter 4		
	Table 4-1:	MSI-EM200-8I4IO LED diagnostic indicators
Chapter 5		
	Table 5-1:	Insulation coordination43
	Table 5-2:	MSI-EM200-4RO LED diagnostic indicators
	Table 5-3:	Relay outputs
	Table 5-4:	Assignment of the relay outputs46
Chapter 6		
Chapter 7		
		Important mounting instructions
Chapter 8		
Chapter 9		
Chapter 10		
Chapter 11		
	Table 11-1	: Diagnostic indicators for MSI 100 and MSI 200
	Table 11-2	Status indicators of the safe inputs and outputs for MSI 100 and MSI 200 92
	Table 11-3	: Diagnostic indicators for MSI-EM200-814IO
	Table 11-4	: Status indicators for MSI-EM200-8I4IO safe inputs and outputs
	Table 11-5	: Diagnostic indicators for MSI-EM200-4RO94
	Table 11-6	Status indicators of the safe outputs for MSI-EM200-4RO
Chapter 12		
	Table 12-1	: Solutions for general problems95
	Table 12-2	Solutions for problems with the graphical connection editor

Table 12-3:	Solutions for problems with the configuration editor	96
Table 12-4:	Solutions for communication problems between MSIsafesoft and the safet module	у Э7
Table 12-5:	Solutions for communication problems between safety module and safe e tension module	x- 99
Table 12-6:	Solutions for messages from the safety module	99

Chapter 13

Chapter 14

Appendix A

Appendix B

Appendix C

B.3 Index

А

Accessories	118
AC-MSI-CFG1	16, 28, 30, 80
Behavior with no AC-MSI-CFG1	84
Downloading a configuration	84
Removing	84
Application example	
Application examples for function blocks	18

В

Basic insulation	43
Block diagram	
MSI 100	24
MSI 200	24
MSI-EM200-4RO	43
MSI-EM200-8I4IO	37

С

Cable lengths to sensors/command devices	67
Certifications	117
Check project	78
Check values (CRC)	83
Checking and downloading the project	77
Clock outputs	
MSI 100	33
MSI 200	33
Clock/signal outputs	
MSI-EM200-8I4IO	39
Commissioning	77
Commissioning mode	, 86
Communication	
USB	16
Configuration	77
Configuring inputs/outputs	77
Confirm button 19, 27, 28, 78, 81, 82,	, 85
Conformity with EMC directive	117
Connection	
MSI 100/200 system example	72
Connection editor	, 96
Connection terminals 23, 36	, 42
Creating projects	77
Cross-circuit protection	32

D

00
77
96
89
89
89
89

Diagnostic and status indicators	
MSI 100	27
MSI 200	27
MSI-EM200-4RO	44
MSI-EM200-8I4IO	37
Diagnostic indicators	
MSI 100	90
MSI 200	90
MSI-EM200-4RO	
MSI-EM200-8I4IO	93
Diagnostic tools	22
DIN rail	64
DIN rail connector	64
Connection	63
Directives	13
Disposal	100
Documentation	14, 119
Downloading a configuration	84
Downloading a project	84

Е

Electrical installation	62, 66
Electrical safety	11
Electrostatic discharge	11
EMC directive	117
Error detection	10, 21
Error state	21
ESD	11
Expert mode (MSISIMsoft simulation)	79
Extension	
Non-safe extension	25
Safe extension	25
Extension devices	
Maximum number	63
Mounting direction	63

F

Firmware update	73
Forcing	28, 79
Forcing of signals	28
Function blocks/functions, safe	9
Function Test	87
Function test	79, 83, 87
Functionality of the MSI 100/200 safety system	15
Functions/function blocks, safe	

G

Gateways	118
Ground connection	11
Ground reference	72
Ground-switching outputs	
MSI 100	34
MSI 200	34

Н

Hardware editor	77, 87
Help, online	18
Hotline	14
Housing	10

I

Information on the wiring examples	49
Installation	62
Installation position	11
Installation space	11
Insulation coordination	43
Insulation dimensioning	11
Intended use	. 8
Interface, USB	16

L

LED symbols 8	89
---------------	----

Μ

Maintenance	100
Mounting	62, 63
performing	64
Mounting instructions	63
Mounting location	63
MSI 100/200 safety system	
System overview	15
Using the system	18
MSI 100/200 system connection example	72
MSIsafesoft	9
Checking and downloading the project	81
Diagnosis	22
Installing the software	75
Offline mode	86, 87
Starting up a project	81, 82
Status line	29, 81, 86
System requirements	117
MSIsafesoft configuration software	75
MSIsafesoft diagnosis	89
MSIsafesoft online mode	78, 86, 87
MSIsafesoft status line	29, 78, 81, 86
MSI-TBUS	64

0

Online help		18
Operating and indication elements		
MSI 100		27
MSI 200		27
Ordering data	101, 1	18

Ρ

Password protection	22, 86
PELV	11
Personnel, requirements	10
Power loss	120
Personnel, requirements Power loss	10 120

Power supply units	11
Problems and solutions	95
Product description	
MSI 100	23
MSI 200	23
MSI-EM200-4RO	42
MSI-EM200-8I4IO	
Project documentation	

Q

Qualifications for personnel		. 10
Qualified personnel	10, 62	, 77

R

Reaction time	124
Reinforced insulation	43
Relay outputs, safe	45
Removal	62, 65
Repair	100
Requirements for personnel	10
Restart interlock	13, 20
Revision history	135

S

Safe extension modules	
MSI-EM200-4RO	42, 49
MSI-EM200-8I4IO	36
Safe inputs	
MSI 100	31
MSI 200	31
MSI-EM200-8I4IO	38
Safe insulation	43
Safe outputs	
MSI 100	32
MSI 200	32
MSI-EM200-8I4IO	38
Safe relay outputs	45
Safe state	19
Safety concept	12
Safety functions, possible	18
Safety hotline	14
Safety module	
MSI 100	23
MSI 200	23
Safety notices	
Electrical	11
General information	9
Screw connections	36, 42
Screw terminals	
Connection	66
Signal connections	
MSI 100	31
MSI 200	31
MSI-EM200-4RO	45
MSI-EM200-8I4IO	38

Signal outputs

MSI 100
MSI 200
MSI-EM200-4RO
Signal redundancy
Simulation
Software 118
Software system requirements 117
Solutions for problems
Spring-cage connections 23, 36, 42
Spring-cage terminals
Connection 66
Standards 13
Start interlock 13, 20, 78, 83, 85
Starting up a project 81, 82
Start-up/restart behavior
Status indicators
MSI 100 92
MSI 200 92
MSI-EM200-4RO
MSI-EM200-8I4IO
Supply connections
MSI 100 34
MSI 200 34
MSI-EM200-4RO 47
MSI-EM200-8I4IO 41
Supply voltage
Connection 69
Supply, 24 V 11
Switching on 69
Switch-off time 124
System description of the MSI 100/200 15

Т

TBUS	64
Technical data 1	01
MSI 100 1	01
MSI 200 1	01
MSI-EM200-4RO 1	12
MSI-EM200-8I4IO 1	07
Test pulses	32
Top-hat rail	64

U

Update firmware	. 73
Updating the firmware	. 73
Uploading a configuration	. 86
Uploading a project	. 86
USB communication	. 16
USB interface 16, 28, 80	, 84
Use, intended	8

V

Voltage supply MSI 100/200 system 7	'2
-------------------------------------	----

C Revision history

Revision	Date	Contents
01	2018-02-01	First publication Combination and revision of the MSI 100 (Part No. 700921) and MSI 200 (Part No. 700931) manuals

Please observe the following notes

General terms and conditions of use for technical documentation

Leuze electronic reserves the right to alter, correct, and/or improve the technical documentation and the products described in the technical documentation at its own discretion and without giving prior notice, insofar as this is reasonable for the user. The same applies to any technical changes that serve the purpose of technical progress.

The receipt of technical documentation (in particular user documentation) does not constitute any further duty on the part of Leuze electronic to furnish information on alterations to products and/or technical documentation. You are responsible for checking the suitability and intended use of the products in your specific application, in particular with regard to observing the applicable standards and legislation. All information made available in the technical data is supplied without any accompanying guarantee, whether expressly mentioned, implied or tacitly assumed.

Furthermore, only the provisions of the respective, current general terms and conditions of Leuze electronic apply, in particular for any warranty liability.

This manual, including all illustrations contained herein, is copyright protected. Any change to the content or publication of excerpts is not permitted.

Leuze electronic reserves the right to register industrial property rights for the product designations of the Leuze electronic products used here. The registration of industrial property rights thereto by third parties is forbidden.

Other product designations may be legally protected even if not marked as such.

How to contact us

Internet	Up-to-date information on products from Leuze electronic and our General Terms and Conditions can be found on the Internet at: www.leuze.com .
	Make sure that you always use the latest documentation. This is available for download at the following address: <u>www.leuze.com</u> .
Subsidiaries	If there are any problems that cannot be solved using the documentation, please contact your subsidiary. You can find the address at <u>www.leuze.com</u> .
Issuer	Leuze electronic GmbH & Co. KG In der Braike 1 73277 Owen GERMANY
	If you have any suggestions or recommendations for improvement regarding the content and design of our manual, please send them to us at: info@leuze.de